text_prompt
stringlengths
168
30.3k
code_prompt
stringlengths
67
124k
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: <a id="ref0"></a> Step2: Use the following function to calculate accuracy Step3: <a id="ref1"></a> Step4: Define a function to train the model Step5: <a id="ref2"></a> Step6: Dataset object Step7: <a id="ref3"></a> Step8: <a id="ref3"></a> Step9: <a id="ref4"></a>
<ASSISTANT_TASK:> Python Code: !conda install -y torchvision import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap def plot_decision_regions_2class(model,data_set): cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA','#00AAFF']) cmap_bold = ListedColormap(['#FF0000', '#00FF00','#00AAFF']) X=data_set.x.numpy() y=data_set.y.numpy() h = .02 x_min, x_max = X[:, 0].min()-0.1 , X[:, 0].max()+0.1 y_min, y_max = X[:, 1].min()-0.1 , X[:, 1].max() +0.1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h),np.arange(y_min, y_max, h)) XX=torch.torch.Tensor(np.c_[xx.ravel(), yy.ravel()]) yhat=np.logical_not((model(XX)[:,0]>0.5).numpy()).reshape(xx.shape) plt.pcolormesh(xx, yy, yhat, cmap=cmap_light) plt.plot(X[y[:,0]==0,0],X[y[:,0]==0,1],'o',label='y=0') plt.plot(X[y[:,0]==1,0],X[y[:,0]==1,1],'ro',label='y=1') plt.title("decision region") plt.legend() def accuracy(model,data_set): return np.mean(data_set.y.view(-1).numpy()==(model(data_set.x)[:,0]>0.5).numpy()) class Net(nn.Module): def __init__(self,D_in,H,D_out): super(Net,self).__init__() self.linear1=nn.Linear(D_in,H) self.linear2=nn.Linear(H,D_out) def forward(self,x): x=torch.sigmoid(self.linear1(x)) x=torch.sigmoid(self.linear2(x)) return x def train(data_set,model,criterion, train_loader, optimizer, epochs=5): LOSS=[] ACC=[] for epoch in range(epochs): for x,y in train_loader: optimizer.zero_grad() yhat=model(x) loss=criterion(yhat,y) optimizer.zero_grad() loss.backward() optimizer.step() ACC.append(accuracy(model,data_set)) LOSS.append(loss) fig, ax1 = plt.subplots() color = 'tab:red' ax1.plot(LOSS,color=color) ax1.set_xlabel('epoch',color=color) ax1.set_ylabel('total loss',color=color) ax1.tick_params(axis='y', color=color) ax2 = ax1.twinx() color = 'tab:blue' ax2.set_ylabel('accuracy', color=color) # we already handled the x-label with ax1 ax2.plot( ACC, color=color) ax2.tick_params(axis='y', labelcolor=color) fig.tight_layout() # otherwise the right y-label is slightly clipped plt.show() return LOSS from torch.utils.data import Dataset, DataLoader class XOR_Data(Dataset): def __init__(self,N_s=100): self.x=torch.zeros((N_s,2)) self.y=torch.zeros((N_s,1)) for i in range(N_s//4): self.x[i,:]=torch.Tensor([0.0,0.0]) self.y[i,0]=torch.Tensor([0.0]) self.x[i+N_s//4,:]=torch.Tensor([0.0,1.0]) self.y[i+N_s//4,0]=torch.Tensor([1.0]) self.x[i+N_s//2,:]=torch.Tensor([1.0,0.0]) self.y[i+N_s//2,0]=torch.Tensor([1.0]) self.x[i+3*N_s//4,:]=torch.Tensor([1.0,1.0]) self.y[i+3*N_s//4,0]=torch.Tensor([0.0]) self.x=self.x+0.01*torch.randn((N_s,2)) self.len=N_s #self.y=self.y.type(torch.LongTensor) def __getitem__(self,index): return self.x[index],self.y[index] def __len__(self): return self.len def plot_stuff(self): plt.plot(self.x[self.y[:,0]==0,0].numpy(),self.x[self.y[:,0]==0,1].numpy(),'o',label="y=0") plt.plot(self.x[self.y[:,0]==1,0].numpy(),self.x[self.y[:,0]==1,1].numpy(),'ro',label="y=1") plt.legend() data_set=XOR_Data() data_set.plot_stuff() learning_rate=0.001 criterion=nn.BCELoss() optimizer=torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader=DataLoader(dataset=data_set,batch_size=1) LOSS12=train(data_set,model,criterion, train_loader, optimizer, epochs=500) plot_decision_regions_2class(model,data_set) learning_rate=0.1 criterion=nn.BCELoss() optimizer=torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader=DataLoader(dataset=data_set,batch_size=1) LOSS12=train(data_set,model,criterion, train_loader, optimizer, epochs=500) plot_decision_regions_2class(model,data_set) learning_rate=0.1 criterion=nn.BCELoss() optimizer=torch.optim.SGD(model.parameters(), lr=learning_rate) train_loader=DataLoader(dataset=data_set,batch_size=1) LOSS12=train(data_set,model,criterion, train_loader, optimizer, epochs=500) plot_decision_regions_2class(model,data_set) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: original output Step2: Recreate validation set and sample Step3: Examine the driver_imgs_list.csv
<ASSISTANT_TASK:> Python Code: #Create directories %cd $DATA_HOME_DIR # did this once %mkdir valid %mkdir results %mkdir -p sample/train %mkdir -p sample/test %mkdir -p sample/valid %mkdir -p sample/results %mkdir -p test/unknown # Create subdirectories for c in categories: %mkdir -p valid/{c} %mkdir -p sample/train/{c} %mkdir -p sample/valid/{c} %cd $DATA_HOME_DIR/train # how many images we talking about? for c in categories: g = glob(c+"/*.jpg") print c, len(g) # going to take 20% or ~460 in each category for validation validation_ratio = 0.2 for c in categories: g = glob(c+"/*.jpg") shuf = np.random.permutation(g) num_valid = int(validation_ratio*len(g)) print num_valid for i in range(num_valid): #print shuf[i], DATA_HOME_DIR+'/valid/' + shuf[i] os.rename(shuf[i], DATA_HOME_DIR+'/valid/' + shuf[i]) # now create the sample train subset of 20 per category for c in categories: g = glob(c+"/*.jpg") shuf = np.random.permutation(g) for i in range(20): #print shuf[i], DATA_HOME_DIR+'/sample/train/' + shuf[i] copyfile(shuf[i], DATA_HOME_DIR+'/sample/train/' + shuf[i]) %cd $DATA_HOME_DIR/valid # now create the sample valid subset of 5 per category for c in categories: g = glob(c+"/*.jpg") shuf = np.random.permutation(g) for i in range(5): #print shuf[i], DATA_HOME_DIR+'/sample/valid/' + shuf[i] copyfile(shuf[i], DATA_HOME_DIR+'/sample/valid/' + shuf[i]) !ls {DATA_HOME_DIR}/train/* |wc -l !ls {DATA_HOME_DIR}/valid/* |wc -l !ls {DATA_HOME_DIR}/test/* |wc -l !ls {DATA_HOME_DIR}/sample/train/* |wc -l !ls {DATA_HOME_DIR}/sample/valid/* |wc -l # Create single 'unknown' class for test set %cd $DATA_HOME_DIR/test %mv *.jpg unknown # and sample test, too %cd $DATA_HOME_DIR/sample/test %mkdir unknown # sample the test set %cd $DATA_HOME_DIR/test/unknown g = glob("*.jpg") shuf = np.random.permutation(g) for i in range(100): #print shuf[i], DATA_HOME_DIR+'/sample/test/unknown/'+shuf[i] copyfile(shuf[i], DATA_HOME_DIR+'/sample/test/unknown/'+shuf[i]) # So, move validation data back. %cd $DATA_HOME_DIR for c in categories: g = glob("valid/"+c+"/*.jpg") for i in range(len(g)): #print g[i], g[i].replace('valid','train') os.rename(g[i], g[i].replace('valid','train')) %cd $DATA_HOME_DIR !ls sample/ #results test train valid !rm -rf sample/results/* !rm sample/test/unknown/* !rm sample/train/c*/*jpg !rm sample/valid/c*/*jpg %cd $DATA_HOME_DIR driver_imgs = pd.read_csv('driver_imgs_list.csv') driver_imgs.head() subjects = driver_imgs.subject.unique() len(subjects), int(0.2*len(subjects)) subjects # let's look at some subject examples #images = [] def img_div(img,txt,idx): W=220 H=200 N=4 float = idx%N < (N-1) # turn off on last one fs = "" if float: fs = 'style="float: left;"' s = "<div %s>"%(fs) s += "<img width=%dpx height=%dpx src='%s'/>%s"%(W,H,img,txt) s += "</div>" return s def show_subjects(subj): html = "" for j,s in enumerate(subj): i = driver_imgs[driver_imgs.subject == s].index[0] classname = driver_imgs.iloc[i].classname img = driver_imgs.iloc[i].img html += img_div("/files/kaggle/statefarm/data/train/"+classname+"/"+img, s, j) display(HTML(html)) show_subjects(subjects) # we should probably make sure validation & testing both have male/female representation # males males = ['p002', 'p012', 'p014', 'p015', 'p016', 'p021', 'p024', 'p026', 'p035', 'p039', 'p047', 'p051', 'p056', 'p075'] # females females = ['p022', 'p041', 'p042', 'p045', 'p049', 'p050', 'p052', 'p061', 'p064', 'p066', 'p072', 'p081'] show_subjects(males) show_subjects(females) len(males), len(females), len(subjects) 0.2*len(males), 0.2*len(females) # okay 3 males & 2 females in our validation set # choosing p045, p049 females set(males).intersection(set(females)) np.random.permutation(males)[:3] # gave ['p035', 'p056', 'p075'] # okay this is the set I came up with. BUT, Jeremy says he only used 3 validation_subjects = ['p021', 'p056', 'p075'] + ['p045', 'p049'] # let's try 3, then. validation_subjects = ['p021', 'p056'] + ['p045'] show_subjects(validation_subjects) validation_df = driver_imgs[driver_imgs.subject.isin(validation_subjects)] # move our validation images from train to valid for i,x in validation_df.iterrows(): #if i < 10: # print x.classname, x.img fr = DATA_HOME_DIR+'/train/' + x.classname + '/' + x.img to = DATA_HOME_DIR+'/valid/' + x.classname + '/' + x.img #print fr, to os.rename(fr,to) %cd $DATA_HOME_DIR/valid # how many images we talking about? for c in categories: g = glob(c+"/*.jpg") print c, len(g) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plot histogram of average ratings by revision Step2: Selected harassing and aggressive revisions by quartile Step3: Inter-Annotator Agreement
<ASSISTANT_TASK:> Python Code: %matplotlib inline from __future__ import division import pandas as pd import numpy as np import matplotlib.pyplot as plt pd.set_option('display.max_colwidth', 1000) # Download data from google drive (Respect Eng / Wiki Collab): wikipdia data/v0_annotated dat = pd.read_csv('../data/experiment-0.csv') # Remove test questions dat = dat[dat['_golden'] == False] dat['num_aggressive_na'] = np.isnan(dat['how_aggressive_or_friendly']) dat['num_attack_na'] = np.isnan(dat['is_harassment_or_attack']) def create_column_of_counts_from_nums(df, col): return df.apply(lambda x: int(col) == x) aggressive_columns = ['-2', '-1', '0', '1', '2'] for col in aggressive_columns: dat[col] = create_column_of_counts_from_nums(dat['how_aggressive_or_friendly'], col) dat['not_attack_1'] = 1 - dat['is_harassment_or_attack'] dat['not_attack_0'] = dat['is_harassment_or_attack'] # Group the data agg_dict = dict.fromkeys(aggressive_columns, 'sum') agg_dict.update({'clean_diff': 'first', 'num_aggressive_na': 'sum', 'num_attack_na': 'sum', '_id':'count', 'not_attack_0':'sum', 'not_attack_1': 'sum'}) grouped_dat = dat.groupby(['rev_id'], as_index=False).agg(agg_dict) # Get rid of data which the majority thinks is not in English or not readable grouped_dat = grouped_dat[(grouped_dat['num_aggressive_na'] <= grouped_dat['_id']/2) & (grouped_dat['num_attack_na'] <= grouped_dat['_id']/2)] def compute_aggression_score(x, cols): n = 0 s = 0 for col in cols: s = s + x[col]*int(col) n = n + x[col] return s/n grouped_dat['aggression_score'] = grouped_dat[aggressive_columns].dot([-2,-1,0,1,2])/grouped_dat['_id'] grouped_dat['attack_score'] = grouped_dat['not_attack_0']/grouped_dat['_id'] def hist_comments(df, bins, plot_by, title): plt.figure() sliced_array = df[[plot_by]] weights = np.ones_like(sliced_array)/len(sliced_array) sliced_array.plot.hist(bins = bins, legend = False, title = title, weights=weights) plt.ylabel('Proportion') plt.xlabel('Average Score') bins = np.linspace(-3,3,11) hist_comments(grouped_dat, bins, 'aggression_score', 'Average Aggressiveness Rating') bins = np.linspace(0,1,9) for col in ['attack_score']: hist_comments(grouped_dat, bins, col, 'Average Attack Rating') def sorted_comments(df, sort_by, quartile, num, is_ascending = True): n = df.shape[0] start_index = int(quartile*n) return df[['clean_diff', 'aggression_score', 'attack_score']].sort_values( by=sort_by, ascending = is_ascending)[start_index:start_index + num] # Least aggressive comments sorted_comments(grouped_dat, 'aggression_score', 0, 5) # Median aggressive comments sorted_comments(grouped_dat, 'aggression_score', 0.5, 5) # Most aggressive comments sorted_comments(grouped_dat, 'aggression_score', 0, 5, False) def add_row_to_coincidence(o, row, columns): m_u = row.sum(1) for i in columns: for j in columns: if i == j: o[i][j] = o[i][j] + row[i]*(row[i]-1)/(m_u-1) else: o[i][j] = o[i][j] + row[i]*row[j]/(m_u-1) return o def make_coincidence_matrix(df, columns): df = df[columns] n = df.shape[0] num_cols = len(columns) o = pd.DataFrame(np.zeros((num_cols,num_cols)), index = columns, columns=columns) for i in xrange(n): o = add_row_to_coincidence(o, df[i:i+1], columns) return o def binary_distance(i,j): return i!=j def interval_distance(i,j): return (int(i)-int(j))**2 def e(n, i, j): if i == j: return n[i]*(n[i]-1)/sum(n)-1 else: return n[i]*n[j]/sum(n)-1 def D_e(o, columns, distance): n = o.sum(1) output = 0 for i in columns: for j in columns: output = output + e(n,i,j)*distance(i,j) return output def D_o(o, columns, distance): output = 0 for i in columns: for j in columns: output = output + o[i][j]*distance(i,j) return output def Krippendorf_alpha(df, columns, distance = binary_distance, o = None): if o is None: o = make_coincidence_matrix(df, columns) d_o = D_o(o, columns, distance) d_e = D_e(o, columns, distance) return (1 - d_o/d_e) print "Krippendorf's Alpha (aggressiveness): " Krippendorf_alpha(grouped_dat, aggressive_columns, distance = interval_distance) print "Krippendorf's Alpha (attack): " Krippendorf_alpha(grouped_dat, ['not_attack_0', 'not_attack_1']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Model-based parametric regression Step2: 2.2. Summary Step3: Fit a Bayesian linear regression model assuming ${\bf z}={\bf x}$ and Step4: To do so, compute the posterior weight distribution using the first $k$ samples in the complete dataset, for $k = 1,2,4,8,\ldots, 128$. Draw all these posteriors along with the prior distribution in the same plot. Step5: Exercise 2 Step6: 3.5 Maximum likelihood vs Bayesian Inference. Making predictions Step7: Posterior distribution of the target Step8: Not only do we obtain a better predictive model, but we also have confidence intervals (error bars) for the predictions. Step9: The above curve may change the position of its maximum from run to run.
<ASSISTANT_TASK:> Python Code: # Import some libraries that will be necessary for working with data and displaying plots # To visualize plots in the notebook %matplotlib inline from IPython import display import matplotlib import matplotlib.pyplot as plt import numpy as np import scipy.io # To read matlab files import pylab import time n_points = 20 n_grid = 200 frec = 3 std_n = 0.2 degree = 3 nplots = 20 #Prior distribution parameters sigma_eps = 0.1 mean_w = np.zeros((degree+1,)) sigma_w = 0.03 ### Try increasing this value var_w = sigma_w * np.eye(degree+1) X_tr = 3 * np.random.random((n_points,1)) - 0.5 S_tr = - np.cos(frec*X_tr) + std_n * np.random.randn(n_points,1) xmin = np.min(X_tr) xmax = np.max(X_tr) X_grid = np.linspace(xmin-0.2*(xmax-xmin), xmax+0.2*(xmax-xmin),n_grid) S_grid = - np.cos(frec*X_grid) #Noise free for the true model fig = plt.figure() ax = fig.add_subplot(111) ax.plot(X_tr,S_tr,'b.',markersize=10) for k in range(nplots): #Draw weigths fromt the prior distribution w_iter = np.random.multivariate_normal(mean_w,var_w) S_grid_iter = np.polyval(w_iter,X_grid) ax.plot(X_grid,S_grid_iter,'g-') ax.set_xlim(xmin-0.2*(xmax-xmin), xmax+0.2*(xmax-xmin)) ax.set_ylim(S_tr[0]-2,S_tr[-1]+2) ax.set_xlabel('$x$') ax.set_ylabel('$s$') plt.show() # True data parameters w_true = 3 std_n = 0.4 # Generate the whole dataset n_max = 64 X_tr = 3 * np.random.random((n_max,1)) - 0.5 S_tr = w_true * X_tr + std_n * np.random.randn(n_max,1) # Model parameters sigma_eps = 0.1 mean_w = np.zeros((1,)) sigma_p = 1e6 * np.eye(1) # No. of points to analyze n_points = [1, 2, 4, 8, 16, 32, 64] # Prepare plots w_grid = np.linspace(2.7, 3.4, 5000) # Sample the w axiss plt.figure() # Plot the prior distribution # p = <FILL IN> plt.plot(w_grid, p.flatten(),'g-') for k in n_points: # Select the first k samples Zk = X_tr[0:k, :] Sk = S_tr[0:k] # Compute the parameters of the posterior distribution # Sigma_w = <FILL IN> # w_MSE = <FILL IN> w_MSE = np.array(w_MSE).flatten() # Draw weights from the posterior distribution # p = <FILL IN> p = p.flatten() plt.plot(w_grid, p,'g-') plt.fill_between(w_grid, 0, p, alpha=0.8, edgecolor='#1B2ACC', facecolor='#089FFF', linewidth=1, antialiased=True) plt.xlim(w_grid[0], w_grid[-1]) plt.ylim(0, np.max(p)) plt.xlabel('$w$') plt.ylabel('$p(w|s)$') display.clear_output(wait=True) display.display(plt.gcf()) time.sleep(0.5) # Remove the temporary plots and fix the last one display.clear_output(wait=True) plt.show() # Print the weight estimate based on the whole dataset print w_MSE # <SOL> # </SOL> n_points = 15 n_grid = 200 frec = 3 std_n = 0.2 degree = 12 nplots = 6 #Prior distribution parameters sigma_eps = 0.1 mean_w = np.zeros((degree+1,)) sigma_p = .3 * np.eye(degree+1) X_tr = 3 * np.random.random((n_points,1)) - 0.5 S_tr = - np.cos(frec*X_tr) + std_n * np.random.randn(n_points,1) X_grid = np.linspace(-.5,2.5,n_grid) S_grid = - np.cos(frec*X_grid) #Noise free for the true model fig = plt.figure() ax = fig.add_subplot(111) ax.plot(X_tr,S_tr,'b.',markersize=10) # Compute matrix with training input data for the polynomial model Z = [] for x_val in X_tr.tolist(): Z.append([x_val[0]**k for k in range(degree+1)]) Z=np.asmatrix(Z) #Compute posterior distribution parameters Sigma_w = np.linalg.inv(np.dot(Z.T,Z)/(sigma_eps**2) + np.linalg.inv(sigma_p)) posterior_mean = Sigma_w.dot(Z.T).dot(S_tr)/(sigma_eps**2) posterior_mean = np.array(posterior_mean).flatten() for k in range(nplots): #Draw weights from the posterior distribution w_iter = np.random.multivariate_normal(posterior_mean,Sigma_w) #Note that polyval assumes the first element of weight vector is the coefficient of #the highest degree term. Thus, we need to reverse w_iter S_grid_iter = np.polyval(w_iter[::-1],X_grid) ax.plot(X_grid,S_grid_iter,'g-') #We plot also the least square solution w_LS = np.polyfit(X_tr.flatten(), S_tr.flatten(), degree) S_grid_iter = np.polyval(w_LS,X_grid) ax.plot(X_grid,S_grid_iter,'m-',label='LS regression') ax.set_xlim(-.5,2.5) ax.set_ylim(S_tr[0]-2,S_tr[-1]+2) ax.legend(loc='best') plt.show() n_points = 15 n_grid = 200 frec = 3 std_n = 0.2 degree = 12 nplots = 6 #Prior distribution parameters sigma_eps = 0.1 mean_w = np.zeros((degree+1,)) sigma_p = .5 * np.eye(degree+1) X_tr = 3 * np.random.random((n_points,1)) - 0.5 S_tr = - np.cos(frec*X_tr) + std_n * np.random.randn(n_points,1) X_grid = np.linspace(-1,3,n_grid) S_grid = - np.cos(frec*X_grid) #Noise free for the true model fig = plt.figure() ax = fig.add_subplot(111) ax.plot(X_tr,S_tr,'b.',markersize=10) #Compute matrix with training input data for the polynomial model Z = [] for x_val in X_tr.tolist(): Z.append([x_val[0]**k for k in range(degree+1)]) Z=np.asmatrix(Z) #Compute posterior distribution parameters Sigma_w = np.linalg.inv(np.dot(Z.T,Z)/(sigma_eps**2) + np.linalg.inv(sigma_p)) posterior_mean = Sigma_w.dot(Z.T).dot(S_tr)/(sigma_eps**2) posterior_mean = np.array(posterior_mean).flatten() #Plot the posterior mean #Note that polyval assumes the first element of weight vector is the coefficient of #the highest degree term. Thus, we need to reverse w_iter S_grid_iter = np.polyval(posterior_mean[::-1],X_grid) ax.plot(X_grid,S_grid_iter,'g-',label='Predictive mean, BI') #Plot confidence intervals for the Bayesian Inference std_x = [] for el in X_grid: x_ast = np.array([el**k for k in range(degree+1)]) std_x.append(np.sqrt(x_ast.dot(Sigma_w).dot(x_ast)[0,0])) std_x = np.array(std_x) plt.fill_between(X_grid, S_grid_iter-std_x, S_grid_iter+std_x, alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', linewidth=4, linestyle='dashdot', antialiased=True) #We plot also the least square solution w_LS = np.polyfit(X_tr.flatten(), S_tr.flatten(), degree) S_grid_iter = np.polyval(w_LS,X_grid) ax.plot(X_grid,S_grid_iter,'m-',label='LS regression') ax.set_xlim(-1,3) ax.set_ylim(S_tr[0]-2,S_tr[-1]+2) ax.legend(loc='best') from math import pi n_points = 15 frec = 3 std_n = 0.2 max_degree = 12 #Prior distribution parameters sigma_eps = 0.2 mean_w = np.zeros((degree+1,)) sigma_p = 0.5 X_tr = 3 * np.random.random((n_points,1)) - 0.5 S_tr = - np.cos(frec*X_tr) + std_n * np.random.randn(n_points,1) #Compute matrix with training input data for the polynomial model Z = [] for x_val in X_tr.tolist(): Z.append([x_val[0]**k for k in range(degree+1)]) Z=np.asmatrix(Z) #Evaluate the posterior evidence logE = [] for deg in range(max_degree): Z_iter = Z[:,:deg+1] logE_iter = -((deg+1)*np.log(2*pi)/2) \ -np.log(np.linalg.det((sigma_p**2)*Z_iter.dot(Z_iter.T) + (sigma_eps**2)*np.eye(n_points)))/2 \ -S_tr.T.dot(np.linalg.inv((sigma_p**2)*Z_iter.dot(Z_iter.T) + (sigma_eps**2)*np.eye(n_points))).dot(S_tr)/2 logE.append(logE_iter[0,0]) plt.plot(np.array(range(max_degree))+1,logE) plt.xlabel('Polynomia degree') plt.ylabel('log evidence') n_points = 15 n_grid = 200 frec = 3 std_n = 0.2 degree = 5 #M-1 nplots = 6 #Prior distribution parameters sigma_eps = 0.1 mean_w = np.zeros((degree+1,)) sigma_p = .5 * np.eye(degree+1) X_tr = 3 * np.random.random((n_points,1)) - 0.5 S_tr = - np.cos(frec*X_tr) + std_n * np.random.randn(n_points,1) X_grid = np.linspace(-1,3,n_grid) S_grid = - np.cos(frec*X_grid) #Noise free for the true model fig = plt.figure() ax = fig.add_subplot(111) ax.plot(X_tr,S_tr,'b.',markersize=10) #Compute matrix with training input data for the polynomial model Z = [] for x_val in X_tr.tolist(): Z.append([x_val[0]**k for k in range(degree+1)]) Z=np.asmatrix(Z) #Compute posterior distribution parameters Sigma_w = np.linalg.inv(np.dot(Z.T,Z)/(sigma_eps**2) + np.linalg.inv(sigma_p)) posterior_mean = Sigma_w.dot(Z.T).dot(S_tr)/(sigma_eps**2) posterior_mean = np.array(posterior_mean).flatten() #Plot the posterior mean #Note that polyval assumes the first element of weight vector is the coefficient of #the highest degree term. Thus, we need to reverse w_iter S_grid_iter = np.polyval(posterior_mean[::-1],X_grid) ax.plot(X_grid,S_grid_iter,'g-',label='Predictive mean, BI') #Plot confidence intervals for the Bayesian Inference std_x = [] for el in X_grid: x_ast = np.array([el**k for k in range(degree+1)]) std_x.append(np.sqrt(x_ast.dot(Sigma_w).dot(x_ast)[0,0])) std_x = np.array(std_x) plt.fill_between(X_grid, S_grid_iter-std_x, S_grid_iter+std_x, alpha=0.2, edgecolor='#1B2ACC', facecolor='#089FFF', linewidth=4, linestyle='dashdot', antialiased=True) #We plot also the least square solution w_LS = np.polyfit(X_tr.flatten(), S_tr.flatten(), degree) S_grid_iter = np.polyval(w_LS,X_grid) ax.plot(X_grid,S_grid_iter,'m-',label='LS regression') ax.set_xlim(-1,3) ax.set_ylim(S_tr[0]-2,S_tr[-1]+2) ax.legend(loc='best') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Tensorflow Lattice와 형상 제약 조건 Step2: 필수 패키지 가져오기 Step3: 이 가이드에서 사용되는 기본값 Step4: 레스토랑 순위 지정을 위한 훈련 데이터세트 Step6: 이 CTR 함수의 등고선도를 살펴보겠습니다. Step7: 데이터 준비하기 Step8: 훈련, 검증 및 테스트 데이터세트를 생성해 보겠습니다. 검색 결과에 레스토랑이 표시되면 사용자의 참여(클릭 또는 클릭 없음)를 샘플 포인트로 기록할 수 있습니다. Step9: 훈련 및 평가에 사용되는 input_fns 정의하기 Step10: 그래디언트 Boosted 트리 적합화하기 Step11: TensorFlow 그래디언트 boosted 결정 트리를 데이터세트에 적합하도록 맞출 수 있습니다. Step12: 모델이 실제 CTR의 일반적인 형상을 포착하고 적절한 검증 메트릭을 가지고 있지만, 입력 공간의 여러 부분에서 반직관적인 동작을 보입니다. 평균 평점 또는 리뷰 수가 증가하면 예상 CTR이 감소하는데, 이는 훈련 데이터세트에서 잘 다루지 않는 영역에 샘플 포인트가 부족하기 때문입니다. 모델은 데이터에서만 올바른 동작을 추론할 방법이 없습니다. Step13: 형상 제약 조건 Step14: CalibratedLatticeConfig를 사용하면 먼저 calibrator를 각 입력(숫자 특성에 대한 부분 선형 함수)에 적용한 다음 격자 레이어를 적용하여 보정된 특성을 비선형적으로 융합하는 준비된 분류자를 생성합니다. tfl.visualization을 사용하여 모델을 시각화할 수 있습니다. 특히 다음 플롯은 미리 준비된 estimator에 포함된 두 개의 훈련된 calibrator를 보여줍니다. Step15: 제약 조건이 추가되면 평균 평점이 증가하거나 리뷰 수가 증가함에 따라 예상 CTR이 항상 증가합니다. 이것은 calibrator와 격자가 단조로운지 확인하여 수행됩니다. Step16: 오목 제약 조건을 추가하여 테스트 메트릭이 어떻게 향상되는지 확인하세요. 예측 플롯은 또한 지상 진실과 더 유사합니다. Step17: 다음 플롯은 훈련된 격자 함수를 나타냅니다. 신뢰 제약 조건으로 인해, 보정된 num_reviews의 큰 값이 보정된 avg_rating에 대한 경사를 더 높여서 격자 출력에서 더 중요한 이동이 있을 것을 예상합니다. Step18: Smoothing Calibrator Step19: 이제 calibrator가 매끄럽고 전체 예상 CTR이 실제와 더 잘 일치합니다. 해당 적용은 테스트 메트릭과 등고선 플롯 모두에 반영됩니다. Step20: 세 번째 특성인 dollar_rating을 포함하려면 범주형 특성이 특성 열과 특성 구성 모두에서 TFL 내에서 약간 다른 처리가 필요하다는 점을 기억해야 합니다. 여기서 다른 모든 입력이 고정될 때 'DD' 레스토랑의 출력이 'D' 레스토랑보다 커야 한다는 부분 단조 제약 조건을 적용합니다. 해당 적용은 특성 구성에서 monotonicity 설정을 사용하여 수행됩니다. Step21: 범주형 calibrator는 모델 출력의 선호도를 보여줍니다. DD &gt; D &gt; DDD &gt; DDDD는 설정과 일치합니다. 결측값에 대한 열도 있습니다. 훈련 및 테스트 데이터에는 누락된 특성이 없지만, 모델은 다운스트림 모델 제공 중에 발생하는 누락된 값에 대한 대체 값을 제공합니다.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@test {"skip": true} !pip install tensorflow-lattice import tensorflow as tf from IPython.core.pylabtools import figsize import itertools import logging import matplotlib from matplotlib import pyplot as plt import numpy as np import pandas as pd import sys import tensorflow_lattice as tfl logging.disable(sys.maxsize) NUM_EPOCHS = 1000 BATCH_SIZE = 64 LEARNING_RATE=0.01 def click_through_rate(avg_ratings, num_reviews, dollar_ratings): dollar_rating_baseline = {"D": 3, "DD": 2, "DDD": 4, "DDDD": 4.5} return 1 / (1 + np.exp( np.array([dollar_rating_baseline[d] for d in dollar_ratings]) - avg_ratings * np.log1p(num_reviews) / 4)) def color_bar(): bar = matplotlib.cm.ScalarMappable( norm=matplotlib.colors.Normalize(0, 1, True), cmap="viridis", ) bar.set_array([0, 1]) return bar def plot_fns(fns, split_by_dollar=False, res=25): Generates contour plots for a list of (name, fn) functions. num_reviews, avg_ratings = np.meshgrid( np.linspace(0, 200, num=res), np.linspace(1, 5, num=res), ) if split_by_dollar: dollar_rating_splits = ["D", "DD", "DDD", "DDDD"] else: dollar_rating_splits = [None] if len(fns) == 1: fig, axes = plt.subplots(2, 2, sharey=True, tight_layout=False) else: fig, axes = plt.subplots( len(dollar_rating_splits), len(fns), sharey=True, tight_layout=False) axes = axes.flatten() axes_index = 0 for dollar_rating_split in dollar_rating_splits: for title, fn in fns: if dollar_rating_split is not None: dollar_ratings = np.repeat(dollar_rating_split, res**2) values = fn(avg_ratings.flatten(), num_reviews.flatten(), dollar_ratings) title = "{}: dollar_rating={}".format(title, dollar_rating_split) else: values = fn(avg_ratings.flatten(), num_reviews.flatten()) subplot = axes[axes_index] axes_index += 1 subplot.contourf( avg_ratings, num_reviews, np.reshape(values, (res, res)), vmin=0, vmax=1) subplot.title.set_text(title) subplot.set(xlabel="Average Rating") subplot.set(ylabel="Number of Reviews") subplot.set(xlim=(1, 5)) _ = fig.colorbar(color_bar(), cax=fig.add_axes([0.95, 0.2, 0.01, 0.6])) figsize(11, 11) plot_fns([("CTR", click_through_rate)], split_by_dollar=True) def sample_restaurants(n): avg_ratings = np.random.uniform(1.0, 5.0, n) num_reviews = np.round(np.exp(np.random.uniform(0.0, np.log(200), n))) dollar_ratings = np.random.choice(["D", "DD", "DDD", "DDDD"], n) ctr_labels = click_through_rate(avg_ratings, num_reviews, dollar_ratings) return avg_ratings, num_reviews, dollar_ratings, ctr_labels np.random.seed(42) avg_ratings, num_reviews, dollar_ratings, ctr_labels = sample_restaurants(2000) figsize(5, 5) fig, axs = plt.subplots(1, 1, sharey=False, tight_layout=False) for rating, marker in [("D", "o"), ("DD", "^"), ("DDD", "+"), ("DDDD", "x")]: plt.scatter( x=avg_ratings[np.where(dollar_ratings == rating)], y=num_reviews[np.where(dollar_ratings == rating)], c=ctr_labels[np.where(dollar_ratings == rating)], vmin=0, vmax=1, marker=marker, label=rating) plt.xlabel("Average Rating") plt.ylabel("Number of Reviews") plt.legend() plt.xlim((1, 5)) plt.title("Distribution of restaurants") _ = fig.colorbar(color_bar(), cax=fig.add_axes([0.95, 0.2, 0.01, 0.6])) def sample_dataset(n, testing_set): (avg_ratings, num_reviews, dollar_ratings, ctr_labels) = sample_restaurants(n) if testing_set: # Testing has a more uniform distribution over all restaurants. num_views = np.random.poisson(lam=3, size=n) else: # Training/validation datasets have more views on popular restaurants. num_views = np.random.poisson(lam=ctr_labels * num_reviews / 50.0, size=n) return pd.DataFrame({ "avg_rating": np.repeat(avg_ratings, num_views), "num_reviews": np.repeat(num_reviews, num_views), "dollar_rating": np.repeat(dollar_ratings, num_views), "clicked": np.random.binomial(n=1, p=np.repeat(ctr_labels, num_views)) }) # Generate datasets. np.random.seed(42) data_train = sample_dataset(500, testing_set=False) data_val = sample_dataset(500, testing_set=False) data_test = sample_dataset(500, testing_set=True) # Plotting dataset densities. figsize(12, 5) fig, axs = plt.subplots(1, 2, sharey=False, tight_layout=False) for ax, data, title in [(axs[0], data_train, "training"), (axs[1], data_test, "testing")]: _, _, _, density = ax.hist2d( x=data["avg_rating"], y=data["num_reviews"], bins=(np.linspace(1, 5, num=21), np.linspace(0, 200, num=21)), density=True, cmap="Blues", ) ax.set(xlim=(1, 5)) ax.set(ylim=(0, 200)) ax.set(xlabel="Average Rating") ax.set(ylabel="Number of Reviews") ax.title.set_text("Density of {} examples".format(title)) _ = fig.colorbar(density, ax=ax) train_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn( x=data_train, y=data_train["clicked"], batch_size=BATCH_SIZE, num_epochs=NUM_EPOCHS, shuffle=False, ) # feature_analysis_input_fn is used for TF Lattice estimators. feature_analysis_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn( x=data_train, y=data_train["clicked"], batch_size=BATCH_SIZE, num_epochs=1, shuffle=False, ) val_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn( x=data_val, y=data_val["clicked"], batch_size=BATCH_SIZE, num_epochs=1, shuffle=False, ) test_input_fn = tf.compat.v1.estimator.inputs.pandas_input_fn( x=data_test, y=data_test["clicked"], batch_size=BATCH_SIZE, num_epochs=1, shuffle=False, ) def analyze_two_d_estimator(estimator, name): # Extract validation metrics. metric = estimator.evaluate(input_fn=val_input_fn) print("Validation AUC: {}".format(metric["auc"])) metric = estimator.evaluate(input_fn=test_input_fn) print("Testing AUC: {}".format(metric["auc"])) def two_d_pred(avg_ratings, num_reviews): results = estimator.predict( tf.compat.v1.estimator.inputs.pandas_input_fn( x=pd.DataFrame({ "avg_rating": avg_ratings, "num_reviews": num_reviews, }), shuffle=False, )) return [x["logistic"][0] for x in results] def two_d_click_through_rate(avg_ratings, num_reviews): return np.mean([ click_through_rate(avg_ratings, num_reviews, np.repeat(d, len(avg_ratings))) for d in ["D", "DD", "DDD", "DDDD"] ], axis=0) figsize(11, 5) plot_fns([("{} Estimated CTR".format(name), two_d_pred), ("CTR", two_d_click_through_rate)], split_by_dollar=False) feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] gbt_estimator = tf.estimator.BoostedTreesClassifier( feature_columns=feature_columns, # Hyper-params optimized on validation set. n_batches_per_layer=1, max_depth=2, n_trees=50, learning_rate=0.05, config=tf.estimator.RunConfig(tf_random_seed=42), ) gbt_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(gbt_estimator, "GBT") feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] dnn_estimator = tf.estimator.DNNClassifier( feature_columns=feature_columns, # Hyper-params optimized on validation set. hidden_units=[16, 8, 8], optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) dnn_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(dnn_estimator, "DNN") feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] model_config = tfl.configs.CalibratedLatticeConfig( feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, ) ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(tfl_estimator, "TF Lattice") def save_and_visualize_lattice(tfl_estimator): saved_model_path = tfl_estimator.export_saved_model( "/tmp/TensorFlow_Lattice_101/", tf.estimator.export.build_parsing_serving_input_receiver_fn( feature_spec=tf.feature_column.make_parse_example_spec( feature_columns))) model_graph = tfl.estimators.get_model_graph(saved_model_path) figsize(8, 8) tfl.visualization.draw_model_graph(model_graph) return model_graph _ = save_and_visualize_lattice(tfl_estimator) feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] model_config = tfl.configs.CalibratedLatticeConfig( feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_convexity="concave", pwl_calibration_num_keypoints=20, ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, ) ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(tfl_estimator, "TF Lattice") _ = save_and_visualize_lattice(tfl_estimator) feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] model_config = tfl.configs.CalibratedLatticeConfig( feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_convexity="concave", pwl_calibration_num_keypoints=20, # Larger num_reviews indicating more trust in avg_rating. reflects_trust_in=[ tfl.configs.TrustConfig( feature_name="avg_rating", trust_type="edgeworth"), ], ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, ) ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(tfl_estimator, "TF Lattice") model_graph = save_and_visualize_lattice(tfl_estimator) lat_mesh_n = 12 lat_mesh_x, lat_mesh_y = tfl.test_utils.two_dim_mesh_grid( lat_mesh_n**2, 0, 0, 1, 1) lat_mesh_fn = tfl.test_utils.get_hypercube_interpolation_fn( model_graph.output_node.weights.flatten()) lat_mesh_z = [ lat_mesh_fn([lat_mesh_x.flatten()[i], lat_mesh_y.flatten()[i]]) for i in range(lat_mesh_n**2) ] trust_plt = tfl.visualization.plot_outputs( (lat_mesh_x, lat_mesh_y), {"Lattice Lookup": lat_mesh_z}, figsize=(6, 6), ) trust_plt.title("Trust") trust_plt.xlabel("Calibrated avg_rating") trust_plt.ylabel("Calibrated num_reviews") trust_plt.show() feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), ] model_config = tfl.configs.CalibratedLatticeConfig( feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_convexity="concave", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], reflects_trust_in=[ tfl.configs.TrustConfig( feature_name="avg_rating", trust_type="edgeworth"), ], ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], ) ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_two_d_estimator(tfl_estimator, "TF Lattice") _ = save_and_visualize_lattice(tfl_estimator) def analyze_three_d_estimator(estimator, name): # Extract validation metrics. metric = estimator.evaluate(input_fn=val_input_fn) print("Validation AUC: {}".format(metric["auc"])) metric = estimator.evaluate(input_fn=test_input_fn) print("Testing AUC: {}".format(metric["auc"])) def three_d_pred(avg_ratings, num_reviews, dollar_rating): results = estimator.predict( tf.compat.v1.estimator.inputs.pandas_input_fn( x=pd.DataFrame({ "avg_rating": avg_ratings, "num_reviews": num_reviews, "dollar_rating": dollar_rating, }), shuffle=False, )) return [x["logistic"][0] for x in results] figsize(11, 22) plot_fns([("{} Estimated CTR".format(name), three_d_pred), ("CTR", click_through_rate)], split_by_dollar=True) feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), tf.feature_column.categorical_column_with_vocabulary_list( "dollar_rating", vocabulary_list=["D", "DD", "DDD", "DDDD"], dtype=tf.string, default_value=0), ] model_config = tfl.configs.CalibratedLatticeConfig( feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_convexity="concave", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], reflects_trust_in=[ tfl.configs.TrustConfig( feature_name="avg_rating", trust_type="edgeworth"), ], ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], ), tfl.configs.FeatureConfig( name="dollar_rating", lattice_size=2, pwl_calibration_num_keypoints=4, # Here we only specify one monotonicity: # `D` resturants has smaller value than `DD` restaurants monotonicity=[("D", "DD")], ), ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_three_d_estimator(tfl_estimator, "TF Lattice") _ = save_and_visualize_lattice(tfl_estimator) feature_columns = [ tf.feature_column.numeric_column("num_reviews"), tf.feature_column.numeric_column("avg_rating"), tf.feature_column.categorical_column_with_vocabulary_list( "dollar_rating", vocabulary_list=["D", "DD", "DDD", "DDDD"], dtype=tf.string, default_value=0), ] model_config = tfl.configs.CalibratedLatticeConfig( output_calibration=True, output_calibration_num_keypoints=5, regularizer_configs=[ tfl.configs.RegularizerConfig(name="output_calib_wrinkle", l2=0.1), ], feature_configs=[ tfl.configs.FeatureConfig( name="num_reviews", lattice_size=2, monotonicity="increasing", pwl_calibration_convexity="concave", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], reflects_trust_in=[ tfl.configs.TrustConfig( feature_name="avg_rating", trust_type="edgeworth"), ], ), tfl.configs.FeatureConfig( name="avg_rating", lattice_size=2, monotonicity="increasing", pwl_calibration_num_keypoints=20, regularizer_configs=[ tfl.configs.RegularizerConfig(name="calib_wrinkle", l2=1.0), ], ), tfl.configs.FeatureConfig( name="dollar_rating", lattice_size=2, pwl_calibration_num_keypoints=4, # Here we only specify one monotonicity: # `D` resturants has smaller value than `DD` restaurants monotonicity=[("D", "DD")], ), ]) tfl_estimator = tfl.estimators.CannedClassifier( feature_columns=feature_columns, model_config=model_config, feature_analysis_input_fn=feature_analysis_input_fn, optimizer=tf.keras.optimizers.Adam(learning_rate=LEARNING_RATE), config=tf.estimator.RunConfig(tf_random_seed=42), ) tfl_estimator.train(input_fn=train_input_fn) analyze_three_d_estimator(tfl_estimator, "TF Lattice") _ = save_and_visualize_lattice(tfl_estimator) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 10.1. Spatiocyte Lattice-based Method Step2: There is a distinct difference in the second argument for spatiocyte.World. This is called voxel radius. Step3: 10.2. The Diffusion Movement of Single Molecule Step4: new_particle method tries to place a particle to a coordinate in spatiocyte.World. It returns the particle's ParticleID (pid). If new_particle fails to place the particle, it returns None instead of a ParticleID. Step5: get_particle method receives a particle ID and returns the ID and particle (of cource the ID are same with the given one). Step6: And you can use FixedIntervalTrajectoryObserver to track the trajectory of molecular diffusion process. Step7: Here we visualized the trajectory with plotting.plot_trajectory method, you can also obtain it as Real3 list with data() method. Step8: data() method returns nested list. Step9: Please remember list_particles_exact method, this method can be used for other World as well as add_molecules method. Step10: Although we used faster kinetic constant than before, the result is same. Step11: 10.4. The Structure in the Spatiocyte Method Step12: Visualize the state of the World. Step13: The Sphere class first argument is the center of the sphere, and second argument is the radius. Step14: Now we restricted the trajectories of Species A on the structure of Species C, and add_molecules works like that. As a note, you need to create the structure before add_molecule. Step15: pid_list is a list of the first 10 ParticleIDs of A molecules. Step16: It might be hard to see them, but actually the Species B are placed only not on a surface. Step17: This means that a Species B becomes A when B collides with a structure M.
<ASSISTANT_TASK:> Python Code: %matplotlib inline from ecell4.prelude import * with species_attributes(): A | B | C | {'D': 1} with reaction_rules(): A + B == C | (0.01, 0.3) m = get_model() w = spatiocyte.World(ones(), 0.005) # The second argument is 'voxel_radius'. w.bind_to(m) w.add_molecules(Species('C'), 60) sim = spatiocyte.Simulator(w) obs = FixedIntervalNumberObserver(0.1, ('A', 'B', 'C')) sim.run(10, obs) show(obs, step=True) with species_attributes(): A | {'D': 1} m = get_model() w = spatiocyte.World(ones(), 0.005) w.bind_to(m) pid = w.new_particle(Species('A'), 0.5 * ones()) pid, p = w.get_particle(pid) print(p.species().serial()) # must print: A print(p.radius(), p.D()) # must print: (0.005, 1.0) print(tuple(p.position())) # must print: (0.49806291436591293, 0.49652123150307814, 0.5) plotting.plot_world(w) sim = spatiocyte.Simulator(w) obs = FixedIntervalTrajectoryObserver(0.002, [pid]) sim.run(1, obs) plotting.plot_trajectory(obs) print(len(obs.data())) # => 1 print(len(obs.data()[0])) # => 501 w.add_molecules(Species('A'), 5) particles = w.list_particles_exact(Species('A')) for pid, p in particles: print(p.species().serial(), tuple(p.position())) with species_attributes(): A | B | C | {'D': 1} with reaction_rules(): A + B > C | 1.0 m = get_model() w = spatiocyte.World(Real3(2, 1, 1), 0.005) w.bind_to(m) w.add_molecules(Species('A'), 120) w.add_molecules(Species('B'), 120) obs = FixedIntervalNumberObserver(0.005, ('A', 'B', 'C')) sim = spatiocyte.Simulator(w) sim.run(1.0, obs) odew = ode.World(Real3(2, 1, 1)) # odew.bind_to(m) odew.add_molecules(Species('A'), 120) odew.add_molecules(Species('B'), 120) odeobs = FixedIntervalNumberObserver(0.005, ('A', 'B', 'C')) odesim = ode.Simulator(odew, m) odesim.run(1.0, odeobs) show(obs, "-", odeobs, "--") import numpy kD = 4 * numpy.pi * (0.005 * 2) * (1 * 2) ka = 1.0 kf = ka * kD / (ka + kD) with reaction_rules(): A + B > C | kf odeobs = run_simulation(1, y0={'A': 120, 'B': 120}, volume=2, return_type='observer') show(obs, "-", odeobs, "--") with species_attributes(): A | {'D': 1, 'location': 'C', 'dimension': 3} C | {'dimension': 3} m = get_model() w = spatiocyte.SpatiocyteWorld(ones(), 0.005) w.bind_to(m) sph = Sphere(0.5 * ones(), 0.45) print(w.add_structure(Species('C'), sph)) # will print 539805 show(w) w.add_molecules(Species('A'), 120) show(w, species_list=['A']) # visualize A-molecules only pid_list = [pid for pid, p in w.list_particles(Species('A'))[: 10]] obs = FixedIntervalTrajectoryObserver(1e-3, pid_list) sim = spatiocyte.Simulator(w) sim.run(1, obs) show(obs) with species_attributes(): A | {'D': 0.1, 'location': 'M', 'dimension': 2} B | {'D': 1} M | {'dimension': 2} m = get_model() w = spatiocyte.World(ones()) w.bind_to(m) origin = Real3(0, 0, 0.5) w.add_structure( Species('M'), PlanarSurface(origin, unitx(), unity())) # Create a structure first w.add_molecules(Species('B'), 480) # Throw-in B-molecules show(w, species_list=['B', 'M']) with species_attributes(): A | {'D': 0.1, 'location': 'M', 'dimension': 2} B | {'D': 1} M | {'dimension': 2} with reaction_rules(): B + M == A | (1.0, 1.5) m = get_model() w.bind_to(m) sim = spatiocyte.Simulator(w) obs = NumberObserver(('A', 'B')) sim.run(2, obs) show(obs) show(w, species_list=['A', 'B']) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load in house sales data Step2: Create new features Step3: Squaring bedrooms will increase the separation between not many bedrooms (e.g. 1) and lots of bedrooms (e.g. 4) since 1^2 = 1 but 4^2 = 16. Consequently this variable will mostly affect houses with many bedrooms. Step4: Applying L1 penalty requires adding an extra parameter (l1_penalty) to the linear regression call in GraphLab Create. (Other tools may have separate implementations of LASSO.) Note that it's important to set l2_penalty=0 to ensure we don't introduce an additional L2 penalty. Step5: Find what features had non-zero weight. Step6: Note that a majority of the weights have been set to zero. So by setting an L1 penalty that's large enough, we are performing a subset selection. Step7: Next, we write a loop that does the following Step8: QUIZ QUESTIONS Step9: Exploring the larger range of values to find a narrow range with the desired sparsity Step10: Now, implement a loop that search through this space of possible l1_penalty values Step11: Out of this large range, we want to find the two ends of our desired narrow range of l1_penalty. At one end, we will have l1_penalty values that have too few non-zeros, and at the other end, we will have an l1_penalty that has too many non-zeros. Step12: QUIZ QUESTIONS Step13: For l1_penalty in np.linspace(l1_penalty_min,l1_penalty_max,20) Step14: QUIZ QUESTIONS
<ASSISTANT_TASK:> Python Code: import graphlab graphlab.product_key.set_product_key("C0C2-04B4-D94B-70F6-8771-86F9-C6E1-E122") sales = graphlab.SFrame('kc_house_data.gl/kc_house_data.gl') from math import log, sqrt sales['sqft_living_sqrt'] = sales['sqft_living'].apply(sqrt) sales['sqft_lot_sqrt'] = sales['sqft_lot'].apply(sqrt) sales['bedrooms_square'] = sales['bedrooms']*sales['bedrooms'] # In the dataset, 'floors' was defined with type string, # so we'll convert them to float, before creating a new feature. sales['floors'] = sales['floors'].astype(float) sales['floors_square'] = sales['floors']*sales['floors'] all_features = ['bedrooms', 'bedrooms_square', 'bathrooms', 'sqft_living', 'sqft_living_sqrt', 'sqft_lot', 'sqft_lot_sqrt', 'floors', 'floors_square', 'waterfront', 'view', 'condition', 'grade', 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated'] model_all = graphlab.linear_regression.create(sales, target='price', features=all_features, validation_set=None, l2_penalty=0., l1_penalty=1e10) model_all.get("coefficients").print_rows(num_rows=18, num_columns=3) model_all['coefficients']['value'].nnz() (training_and_validation, testing) = sales.random_split(.9,seed=1) # initial train/test split (training, validation) = training_and_validation.random_split(0.5, seed=1) # split training into train and validate import numpy as np def get_RSS(prediction, output): residual = output - prediction # square the residuals and add them up RS = residual*residual RSS = RS.sum() return(RSS) for l1_penalty in np.logspace(1, 7, num=13): A = 0 print l1_penalty model_all = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0, l1_penalty=l1_penalty) predictions=model_all.predict(validation) A = get_RSS(predictions,validation['price']) print A model_all = graphlab.linear_regression.create(testing, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0, l1_penalty=10) model_all['coefficients']['value'].nnz() max_nonzeros = 7 l1_penalty_values = np.logspace(8, 10, num=20) for l1_penalty in np.logspace(8, 10, num=20): A = 0 predictions = 0 print l1_penalty model_all = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0, l1_penalty=l1_penalty) predictions=model_all.predict(validation) A = get_RSS(predictions,validation['price']) print A print model_all['coefficients']['value'].nnz() l1_penalty_min = 2976351441.63 l1_penalty_max = 3792690190.73 l1_penalty_values = np.linspace(l1_penalty_min,l1_penalty_max,20) for l1_penalty in np.linspace(l1_penalty_min,l1_penalty_max,20): A = 0 predictions = 0 model_all = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0, l1_penalty=l1_penalty) predictions=model_all.predict(validation) A = get_RSS(predictions,validation['price']) if model_all['coefficients']['value'].nnz() <= 7: print l1_penalty print A print model_all['coefficients']['value'].nnz() model_all = graphlab.linear_regression.create(training, target='price', features=all_features, validation_set=None, verbose = False, l2_penalty=0, l1_penalty=3448968612.16) # model_all['coefficients']['value'].nnz() # print np.linspace(l1_penalty_min,l1_penalty_max,20)[0] print model_all['coefficients'].print_rows(num_rows=18, num_columns=3) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import torch A, B = load_data() cnt_not_equal = int((A[int(len(A) / 2):] != B[int(len(A) / 2):]).sum()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The global collection of tide gauge records at the PSMSL is used to access the data. The other way to access the data is to ask the service desk data at Rijkswaterstaat. There are two types of datasets the "Revised Local Reference" and "Metric". For the Netherlands the difference is that the "Revised Local Reference" undoes the corrections from the NAP correction in 2014, to get a consistent dataset. Step5: Now that we have defined which tide gauges we are monitoring we can start downloading the relevant data. Step6: Now that we have all data downloaded we can compute the mean. Step7: Methods Step8: Is there a sea-level acceleration? Step9: Conclusions
<ASSISTANT_TASK:> Python Code: # this is a list of packages that are used in this notebook # these come with python import io import zipfile import functools # you can install these packages using pip or anaconda # (requests numpy pandas bokeh pyproj statsmodels) # for downloading import requests # computation libraries import numpy as np import pandas # coordinate systems import pyproj # statistics import statsmodels.api as sm # plotting import bokeh.charts import bokeh.io import bokeh.plotting import bokeh.tile_providers import bokeh.palettes # displaying things from ipywidgets import Image import IPython.display # Some coordinate systems WEBMERCATOR = pyproj.Proj(init='epsg:3857') WGS84 = pyproj.Proj(init='epsg:4326') # If this notebook is not showing up with figures, you can use the following url: # https://nbviewer.ipython.org/github/openearth/notebooks/blob/master/sealevelmonitor.ipynb bokeh.io.output_notebook() urls = { 'metric_monthly': 'http://www.psmsl.org/data/obtaining/met.monthly.data/met_monthly.zip', 'rlr_monthly': 'http://www.psmsl.org/data/obtaining/rlr.annual.data/rlr_monthly.zip', 'rlr_annual': 'http://www.psmsl.org/data/obtaining/rlr.annual.data/rlr_annual.zip' } dataset_name = 'rlr_annual' # these compute the rlr back to NAP (ignoring the undoing of the NAP correction) main_stations = { 20: { 'name': 'Vlissingen', 'rlr2nap': lambda x: x - (6976-46) }, 22: { 'name': 'Hoek van Holland', 'rlr2nap': lambda x:x - (6994 - 121) }, 23: { 'name': 'Den Helder', 'rlr2nap': lambda x: x - (6988-42) }, 24: { 'name': 'Delfzijl', 'rlr2nap': lambda x: x - (6978-155) }, 25: { 'name': 'Harlingen', 'rlr2nap': lambda x: x - (7036-122) }, 32: { 'name': 'IJmuiden', 'rlr2nap': lambda x: x - (7033-83) } } # the main stations are defined by their ids main_stations_idx = list(main_stations.keys()) main_stations_idx # download the zipfile resp = requests.get(urls[dataset_name]) # we can read the zipfile stream = io.BytesIO(resp.content) zf = zipfile.ZipFile(stream) # this list contains a table of # station ID, latitude, longitude, station name, coastline code, station code, and quality flag csvtext = zf.read('{}/filelist.txt'.format(dataset_name)) stations = pandas.read_csv( io.BytesIO(csvtext), sep=';', names=('id', 'lat', 'lon', 'name', 'coastline_code', 'station_code', 'quality'), converters={ 'name': str.strip, 'quality': str.strip } ) stations = stations.set_index('id') # the dutch stations in the PSMSL database, make a copy # or use stations.coastline_code == 150 for all dutch stations selected_stations = stations.ix[main_stations_idx].copy() # set the main stations, this should be a list of 6 stations selected_stations # show all the stations on a map # compute the bounds of the plot sw = (50, -5) ne = (55, 10) # transform to web mercator sw_wm = pyproj.transform(WGS84, WEBMERCATOR, sw[1], sw[0]) ne_wm = pyproj.transform(WGS84, WEBMERCATOR, ne[1], ne[0]) # create a plot fig = bokeh.plotting.figure(tools='pan, wheel_zoom', plot_width=600, plot_height=200, x_range=(sw_wm[0], ne_wm[0]), y_range=(sw_wm[1], ne_wm[1])) fig.axis.visible = False # add some background tiles fig.add_tile(bokeh.tile_providers.STAMEN_TERRAIN) # add the stations x, y = pyproj.transform(WGS84, WEBMERCATOR, np.array(stations.lon), np.array(stations.lat)) fig.circle(x, y) x, y = pyproj.transform(WGS84, WEBMERCATOR, np.array(selected_stations.lon), np.array(selected_stations.lat)) _ = fig.circle(x, y, color='red') # show the plot bokeh.io.show(fig) # each station has a number of files that you can look at. # here we define a template for each filename # stations that we are using for our computation # define the name formats for the relevant files names = { 'datum': '{dataset}/RLR_info/{id}.txt', 'diagram': '{dataset}/RLR_info/{id}.png', 'url': 'http://www.psmsl.org/data/obtaining/rlr.diagrams/{id}.php', 'data': '{dataset}/data/{id}.rlrdata', 'doc': '{dataset}/docu/{id}.txt', 'contact': '{dataset}/docu/{id}_auth.txt' } def get_url(station, dataset): return the url of the station information (diagram and datum) info = dict( dataset=dataset, id=station.name ) url = names['url'].format(**info) return url # fill in the dataset parameter using the global dataset_name f = functools.partial(get_url, dataset=dataset_name) # compute the url for each station selected_stations['url'] = selected_stations.apply(f, axis=1) selected_stations def missing2nan(value, missing=-99999): convert the value to nan if the float of value equals the missing value value = float(value) if value == missing: return np.nan return value def get_data(station, dataset): get data for the station (pandas record) from the dataset (url) info = dict( dataset=dataset, id=station.name ) bytes = zf.read(names['data'].format(**info)) df = pandas.read_csv( io.BytesIO(bytes), sep=';', names=('year', 'height', 'interpolated', 'flags'), converters={ "height": lambda x: main_stations[station.name]['rlr2nap'](missing2nan(x)), "interpolated": str.strip, } ) df['station'] = station.name return df # get data for all stations f = functools.partial(get_data, dataset=dataset_name) # look up the data for each station selected_stations['data'] = [f(station) for _, station in selected_stations.iterrows()] # we now have data for each station selected_stations[['name', 'data']] # compute the mean grouped = pandas.concat(selected_stations['data'].tolist())[['year', 'height']].groupby('year') mean_df = grouped.mean().reset_index() # filter out non-trusted part (before NAP) mean_df = mean_df[mean_df['year'] >= 1890].copy() # these are the mean waterlevels mean_df.tail() # show all the stations, including the mean title = 'Sea-surface height for Dutch tide gauges [{year_min} - {year_max}]'.format( year_min=mean_df.year.min(), year_max=mean_df.year.max() ) fig = bokeh.plotting.figure(title=title, x_range=(1860, 2020), plot_width=900, plot_height=400) colors = bokeh.palettes.Accent6 for color, (id_, station) in zip(colors, selected_stations.iterrows()): data = station['data'] fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.5) fig.line(mean_df.year, mean_df.height, line_width=3, alpha=0.7, color='black', legend='Mean') fig.legend.location = "bottom_right" fig.yaxis.axis_label = 'waterlevel [mm] above NAP' fig.xaxis.axis_label = 'year' bokeh.io.show(fig) # define the statistical model y = mean_df['height'] X = np.c_[ mean_df['year']-1970, np.cos(2*np.pi*(mean_df['year']-1970)/18.613), np.sin(2*np.pi*(mean_df['year']-1970)/18.613) ] X = sm.add_constant(X) model = sm.OLS(y, X) fit = model.fit() fit.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Nodal U', 'Nodal V']) # things to check: # Durbin Watson should be >1 for no worries, >2 for no autocorrelation # JB should be non-significant for normal residuals # abs(x2.t) + abs(x3.t) should be > 3, otherwise adding nodal is not useful fig = bokeh.plotting.figure(x_range=(1860, 2020), plot_width=900, plot_height=400) for color, (id_, station) in zip(colors, selected_stations.iterrows()): data = station['data'] fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.8) fig.circle(mean_df.year, mean_df.height, line_width=3, legend='Mean', color='black', alpha=0.5) fig.line(mean_df.year, fit.predict(), line_width=3, legend='Current') fig.legend.location = "bottom_right" fig.yaxis.axis_label = 'waterlevel [mm] above N.A.P.' fig.xaxis.axis_label = 'year' bokeh.io.show(fig) # define the statistical model y = mean_df['height'] X = np.c_[ mean_df['year']-1970, (mean_df['year'] > 1993) * (mean_df['year'] - 1993), np.cos(2*np.pi*(mean_df['year']-1970)/18.613), np.sin(2*np.pi*(mean_df['year']-1970)/18.613) ] X = sm.add_constant(X) model_broken_linear = sm.OLS(y, X) fit_broken_linear = model_broken_linear.fit() # define the statistical model y = mean_df['height'] X = np.c_[ mean_df['year']-1970, (mean_df['year'] - 1970) * (mean_df['year'] - 1970), np.cos(2*np.pi*(mean_df['year']-1970)/18.613), np.sin(2*np.pi*(mean_df['year']-1970)/18.613) ] X = sm.add_constant(X) model_quadratic = sm.OLS(y, X) fit_quadratic = model_quadratic.fit() fit_broken_linear.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Trend(year > 1990)', 'Nodal U', 'Nodal V']) fit_quadratic.summary(yname='Sea-surface height', xname=['Constant', 'Trend', 'Trend**2', 'Nodal U', 'Nodal V']) fig = bokeh.plotting.figure(x_range=(1860, 2020), plot_width=900, plot_height=400) for color, (id_, station) in zip(colors, selected_stations.iterrows()): data = station['data'] fig.circle(data.year, data.height, color=color, legend=station['name'], alpha=0.8) fig.circle(mean_df.year, mean_df.height, line_width=3, legend='Mean', color='black', alpha=0.5) fig.line(mean_df.year, fit.predict(), line_width=3, legend='Current') fig.line(mean_df.year, fit_broken_linear.predict(), line_width=3, color='#33bb33', legend='Broken') fig.line(mean_df.year, fit_quadratic.predict(), line_width=3, color='#3333bb', legend='Quadratic') fig.legend.location = "top_left" fig.yaxis.axis_label = 'waterlevel [mm] above N.A.P.' fig.xaxis.axis_label = 'year' bokeh.io.show(fig) msg = '''The current average waterlevel above NAP (in mm), based on the 6 main tide gauges for the year {year} is {height:.1f} cm. The current sea-level rise is {rate:.0f} cm/century''' print(msg.format(year=mean_df['year'].iloc[-1], height=fit.predict()[-1]/10.0, rate=fit.params.x1*100.0/10)) if (fit.aic < fit_broken_linear.aic): print('The linear model is a higher quality model (smaller AIC) than the broken linear model.') else: print('The broken linear model is a higher quality model (smaller AIC) than the linear model.') if (fit_broken_linear.pvalues['x2'] < 0.05): print('The trend break is bigger than we would have expected under the assumption that there was no trend break.') else: print('Under the assumption that there is no trend break, we would have expected a trend break as big as we have seen.') if (fit.aic < fit_quadratic.aic): print('The linear model is a higher quality model (smaller AIC) than the quadratic model.') else: print('The quadratic model is a higher quality model (smaller AIC) than the linear model.') if (fit_quadratic.pvalues['x2'] < 0.05): print('The quadratic term is bigger than we would have expected under the assumption that there was no quadraticness.') else: print('Under the assumption that there is no quadraticness, we would have expected a quadratic term as big as we have seen.') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: The code above also defines a stardard conformal $\mathbb{R}^{N+1,1}$ layout without this new basis vector. This is primarily to support rendering with pyganja, which doesn't support the presence of this extra vector. BasisVectorMap defaults to preserving vectors by name between one algebra and another, while throwing away blades containing vectors missing from the destination algebra. Step2: Before we start looking at specified dimensions of euclidean space, we build a helper to construct conformal dual circles and spheres, with the word round being a general term intended to cover both circles and spheres. Step3: In order to render with pyganja, we'll need a helper to convert from our custom $\mathbb{R}^{N+1,2}$ layout into a standard conformal $\mathbb{R}^{N+1,1}$ layout. clifford maps indices in .value to basis blades via layout._basis_blade_order.index_to_bitmap, which we can use to convert the indices in one layout to the indices in another. Step4: Apollonius' problem in $\mathbb{R}^2$ with circles Step5: This gives us the Layout l2 with the desired metric, Step6: Now we can build some dual circles Step7: Compute the space orthogonal to all of them, which is an object of grade 2 Step8: We hypothesize that this object is of the form l2.ups(c4) ^ l2.ups(c5). Step9: And finally, plot our circles Step10: This works for colinear circles too Step11: Apollonius' problem in $\mathbb{R}^3$ with spheres Step12: Again, we can check the metric Step13: And apply the solution to some spheres, noting that we now need 4 in order to constrain our solution
<ASSISTANT_TASK:> Python Code: from clifford import ConformalLayout, BasisVectorIds, MultiVector, transformations class OurCustomLayout(ConformalLayout): def __init__(self, ndims): self.ndims = ndims euclidean_vectors = [str(i + 1) for i in range(ndims)] conformal_vectors = ['m2', 'm1'] # Construct our custom algebra. Note that ConformalLayout requires the e- and e+ basis vectors to be last. ConformalLayout.__init__( self, [1]*ndims + [-1] + [1, -1], ids=BasisVectorIds(euclidean_vectors + ['np1'] + conformal_vectors) ) self.enp1 = self.basis_vectors_lst[ndims] # Construct a base algebra without the extra `enp1`, which would not be understood by pyganja. self.conformal_base = ConformalLayout( [1]*ndims + [1, -1], ids=BasisVectorIds(euclidean_vectors + conformal_vectors) ) # this lets us convert between the two layouts self.to_conformal = transformations.between_basis_vectors(self, self.conformal_base) def ups(self, s): return s + self.enp1*abs(s) OurCustomLayout.ups = ups; del ups def downs(self, mv): if (mv | self.enp1)[()] > 0: mv = -mv return mv OurCustomLayout.downs = downs; del downs def dual_round(at, r): l = at.layout return l.up(at) - 0.5*l.einf*r*r import itertools from pyganja import GanjaScene, draw def plot_rounds(in_rounds, out_rounds, scale=1): colors = itertools.cycle([ (255, 0, 0), (0, 255, 0), (0, 0, 255), (0, 255, 255), ]) # note: .dual() neede here because we're passing in dual rounds, but ganja expects direct rounds s = GanjaScene() for r, color in zip(in_rounds, colors): s.add_object(r.layout.to_conformal(r).dual(), color=color) for r in out_rounds: s.add_object(r.layout.to_conformal(r).dual(), color=(64, 64, 64)) draw(s, sig=r.layout.conformal_base.sig, scale=scale) l2 = OurCustomLayout(ndims=2) e1, e2 = l2.basis_vectors_lst[:2] import pandas as pd # convenient but somewhat slow trick for showing tables pd.DataFrame(l2.metric, index=l2.basis_names, columns=l2.basis_names) # add minus signs before `dual_round` to flip circle directions c1 = dual_round(-e1-e2, 1) c2 = dual_round(e1-e2, 0.75) c3 = dual_round(e2, 0.5) pp = (l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual() pp.grades() def pp_ends(pp): P = (1 + pp.normal()) / 2 return P * (pp | pp.layout.enp1), ~P * (pp | pp.layout.enp1) c4u, c5u = pp_ends(pp) plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)], scale=0.75) c1 = dual_round(-1.5*e1, 0.5) c2 = dual_round(e1*0, 0.5) c3 = dual_round(1.5*e1, 0.5) c4u, c5u = pp_ends((l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual()) plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)]) c1 = dual_round(-3*e1, 1.5) c2 = dual_round(-2*e1, 1) c3 = -dual_round(2*e1, 1) c4u, c5u = pp_ends((l2.ups(c1) ^ l2.ups(c2) ^ l2.ups(c3)).dual()) plot_rounds([c1, c2, c3], [l2.downs(c4u), l2.downs(c5u)]) l3 = OurCustomLayout(ndims=3) e1, e2, e3 = l3.basis_vectors_lst[:3] pd.DataFrame(l3.metric, index=l3.basis_names, columns=l3.basis_names) c1 = dual_round(e1+e2+e3, 1) c2 = dual_round(-e1+e2-e3, 0.25) c3 = dual_round(e1-e2-e3, 0.5) c4 = dual_round(-e1-e2+e3, 1) c5u, c6u = pp_ends((l3.ups(c1) ^ l3.ups(c2) ^ l3.ups(c3) ^ l3.ups(c4)).dual()) plot_rounds([c1, c2, c3, c4], [l3.downs(c6u), l3.downs(c5u)], scale=0.25) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the database webserver. Step2: Import the web interface and initialize it. Step3: The instructions below assume that these three steps have been carried out. Step4: Insert Time Series Step5: Upsert Metadata Step6: Delete Time Series Step7: Select Step8: Augmented Select Step9: Add Trigger Step10: Remove Trigger Step11: Add Vantage Point Step12: Delete Vantage Point Step13: Vantage Point Similarity Search Step14: iSAX Tree Similarity Search Step15: iSAX Tree Representation Step16: Termination Step17: Remember to terminate any outstanding processes!
<ASSISTANT_TASK:> Python Code: # you must specify the length of the time series when loading the database ts_length = 100 # when running from the terminal # python go_server_persistent.py --ts_length 100 --db_name 'demo' # here we load the server as a subprocess for demonstration purposes server = subprocess.Popen(['python', '../go_server_persistent.py', '--ts_length', str(ts_length), '--data_dir', '../db_files', '--db_name', 'demo']) time.sleep(5) # make sure it loads completely # when running from the terminal # python go_webserver.py # here we load the server as a subprocess for demonstration purposes webserver = subprocess.Popen(['python', '../go_webserver.py']) time.sleep(5) # make sure it loads completely from webserver import * web_interface = WebInterface() from timeseries import * def tsmaker(m, s, j): ''' Helper function: randomly generates a time series for testing. Parameters ---------- m : float Mean value for generating time series data s : float Standard deviation value for generating time series data j : float Quantifies the "jitter" to add to the time series data Returns ------- A time series and associated meta data. ''' # generate metadata meta = {} meta['order'] = int(np.random.choice( [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5])) meta['blarg'] = int(np.random.choice([1, 2])) # generate time series data t = np.arange(0.0, 1.0, 0.01) v = norm.pdf(t, m, s) + j * np.random.randn(ts_length) # return time series and metadata return meta, TimeSeries(t, v) # generate sample time series num_ts = 50 mus = np.random.uniform(low=0.0, high=1.0, size=num_ts) sigs = np.random.uniform(low=0.05, high=0.4, size=num_ts) jits = np.random.uniform(low=0.05, high=0.2, size=num_ts) # initialize dictionaries for time series and their metadata primary_keys = [] tsdict = {} metadict = {} # fill dictionaries with randomly generated entries for database for i, m, s, j in zip(range(num_ts), mus, sigs, jits): meta, tsrs = tsmaker(m, s, j) # generate data pk = "ts-{}".format(i) # generate primary key primary_keys.append(pk) # keep track of all primary keys tsdict[pk] = tsrs # store time series data metadict[pk] = meta # store metadata # insert all the time series for k in primary_keys: web_interface.insert_ts(pk=k, ts=tsdict[k]) # check what is in the database web_interface.select(fields=None, additional={'sort_by': '+pk', 'limit': 10}) # successfully inserting data will yield a success code web_interface.insert_ts(pk='sample1', ts=tsdict[primary_keys[0]]) # errors will yield an error code (e.g. attempting to insert the same primary key twice) web_interface.insert_ts(pk='sample1', ts=tsdict[primary_keys[0]]) # let's remove the test time series web_interface.delete_ts('sample1') # upsert the metadata for k in primary_keys: web_interface.upsert_meta(k, metadict[k]) # let's check the first five entries in the database - they should include metadata web_interface.select(fields=[], additional={'sort_by': '+pk', 'limit': 5}) # example primary key to delete primary_keys[0] # delete an existing time series web_interface.delete_ts(primary_keys[0]) # check what is in the database - should not include the deleted key # note: select operations return dictionaries, so you can use the keys(), values(), and items() methods web_interface.select(additional={'sort_by': '+pk'}).keys() # double-check! primary_keys[0] in web_interface.select(additional={'sort_by': '+pk'}).keys() # add the time series and metadata back in web_interface.insert_ts(primary_keys[0], tsdict[primary_keys[0]]) web_interface.upsert_meta(primary_keys[0], metadict[primary_keys[0]]) # check what is in the database - should include the newly added key web_interface.select(additional={'sort_by': '+pk'}).keys() # select all database entries; no metadata fields web_interface.select(additional={'sort_by': '+pk', 'limit': 10}) # select all database entries; all metadata fields web_interface.select(fields=[], additional={'sort_by': '+pk', 'limit': 10}) # select a specific time series; all metadata fields web_interface.select(md={'pk': 'ts-0'}, fields=[]) # return a specific time series and the result of the 'stats' function (mean and standard deviation) web_interface.augmented_select( proc='stats', target=['mean', 'std'], arg=None, md={'pk': 'ts-0'}, additional=None) # add trigger web_interface.add_trigger('stats', 'insert_ts', ['mean', 'std'], None) # add a new time series with the trigger (note: not adding metadata) web_interface.insert_ts('test', tsdict[primary_keys[0]]) # inspect the results of the trigger - should include mean and std fields web_interface.select(md={'pk': 'test'}, fields=[]) # delete back out web_interface.delete_ts('test') # remove trigger web_interface.remove_trigger('stats', 'insert_ts') # add a new time series without the trigger (note: not adding metadata) web_interface.insert_ts('sample2', tsdict[primary_keys[0]]) # inspect the results of the trigger - should not include mean and std fields web_interface.select(md={'pk': 'sample2'}, fields=[]) # delete back out web_interface.delete_ts('sample2') # randomly choose time series as vantage points num_vps = 5 random_vps = np.random.choice(range(num_ts), size=num_vps, replace=False) vpkeys = ['ts-{}'.format(i) for i in random_vps] # add the time series as vantage points for i in range(num_vps): web_interface.insert_vp(vpkeys[i]) # delete one of the vantage points web_interface.delete_vp(vpkeys[0]) # add it back in web_interface.insert_vp(vpkeys[0]) # run similarity search on a time series already in the database # should return the same time series primary_keys[0], web_interface.vp_similarity_search(tsdict[primary_keys[0]], 1) # create dummy time series for demonstration purposes _, query = tsmaker(np.random.uniform(low=0.0, high=1.0), np.random.uniform(low=0.05, high=0.4), np.random.uniform(low=0.05, high=0.2)) results = web_interface.vp_similarity_search(query, 1) results # visualize the results plt.plot(query, label='Query TS') plt.plot(tsdict[list(results.keys())[0]], label='Closest TS') plt.legend(loc='best') plt.xticks([]) plt.show() # run similarity search on a time series already in the database # should return the same time series primary_keys[0], web_interface.isax_similarity_search(tsdict[primary_keys[0]]) # create dummy time series for demonstration purposes _, query = tsmaker(np.random.uniform(low=0.0, high=1.0), np.random.uniform(low=0.05, high=0.4), np.random.uniform(low=0.05, high=0.2)) # note: because this is an approximate search, it will not be able # to find a match for all query time series results = web_interface.isax_similarity_search(query) results # visualize the results plt.plot(query, label='Query TS') plt.plot(tsdict[list(results.keys())[0]], label='Closest TS') plt.legend(loc='best') plt.xticks([]) plt.show() # note: print() is required to visualize the tree correctly with carriage returns print(web_interface.isax_tree()) # insert all the time series for k in primary_keys: web_interface.delete_ts(pk=k) # check that no data is left web_interface.select() # terminate processes before exiting os.kill(server.pid, signal.SIGINT) time.sleep(5) # give it time to terminate web_interface = None webserver.terminate() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: 1.4.2 Code Management with Git Step4: 1.5.6 SDSS DR7 Quasar Catalog Step5: Access BOSS spectra and metadata Step6: Read the DR12 quasar catalog Step8: 1.6.1 Plotting Two-Dimensional Representations of Large Data Sets Step9: Use the same technique to plot the r-i vs. redshift quasar plot above Step11: 1.6.3 Plotting Representations of Data on the Sky Step12: You can make nicer sky plots using the Basemap map-projections library. This example is borrowed from the bossdata docs and shows the number density of BOSS DR12 quasars on the sky Step13: Graphing Extras
<ASSISTANT_TASK:> Python Code: %pylab inline import astroML print astroML.__version__ SDSS Spectrum Example --------------------- Figure 1.2. An example of an SDSS spectrum (the specific flux plotted as a function of wavelength) loaded from the SDSS SQL server in real time using Python tools provided here (this spectrum is uniquely described by SDSS parameters plate=1615, fiber=513, and mjd=53166). # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt from astroML.datasets import fetch_sdss_spectrum #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch single spectrum plate = 1615 mjd = 53166 fiber = 513 spec = fetch_sdss_spectrum(plate, mjd, fiber) #------------------------------------------------------------ # Plot the resulting spectrum fig, ax = plt.subplots(figsize=(5, 3.75)) ax.plot(spec.wavelength(), spec.spectrum, '-k', lw=1) ax.set_xlim(3000, 10000) ax.set_ylim(25, 300) ax.set_xlabel(r'$\lambda {(\rm \AA)}$') ax.set_ylabel('Flux') ax.set_title('Plate = %(plate)i, MJD = %(mjd)i, Fiber = %(fiber)i' % locals()) plt.show() SDSS DR7 Quasars ---------------- Figure 1.4. The r-i color vs. redshift diagram for the first 10,000 entries from the SDSS Data Release 7 Quasar Catalog. The color variation is due to emission lines entering and exiting the r and i band wavelength windows. # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt from astroML.datasets import fetch_dr7_quasar #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the quasar data data = fetch_dr7_quasar() # select the first 10000 points data = data[:10000] r = data['mag_r'] i = data['mag_i'] z = data['redshift'] #------------------------------------------------------------ # Plot the quasar data fig, ax = plt.subplots(figsize=(5, 3.75)) ax.plot(z, r - i, marker='.', markersize=2, linestyle='none', color='black') ax.set_xlim(0, 5) ax.set_ylim(-0.5, 1.0) ax.set_xlabel(r'${\rm redshift}$') ax.set_ylabel(r'${\rm r-i}$') plt.show() import bossdata print bossdata.__version__ quasar_catalog = bossdata.meta.Database(quasar_catalog=True) dr12q = quasar_catalog.select_all(what='RA,DEC,Z_VI,PSFMAG_2,PSFMAG_3', max_rows=0) z = dr12q['Z_VI'] r = dr12q['PSFMAG_2'] i = dr12q['PSFMAG_3'] fig, ax = plt.subplots(figsize=(5, 3.75)) ax.plot(z, r - i, marker='.', markersize=2, linestyle='none', color='black') ax.set_xlim(0, 5) ax.set_ylim(-0.5, 1.0) ax.set_xlabel(r'${\rm redshift}$') ax.set_ylabel(r'${\rm r-i}$') plt.show() SDSS Stripe 82 Standard Stars ----------------------------- Figure 1.9. Scatter plot with contours over dense regions.This is a color-color diagram of the entire set of SDSS Stripe 82 standard stars; cf. figure 1.6. # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from matplotlib import pyplot as plt from astroML.plotting import scatter_contour from astroML.datasets import fetch_sdss_S82standards #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Fetch the Stripe 82 standard star catalog data = fetch_sdss_S82standards() g = data['mmu_g'] r = data['mmu_r'] i = data['mmu_i'] #------------------------------------------------------------ # plot the results fig, ax = plt.subplots(figsize=(5, 3.75)) scatter_contour(g - r, r - i, threshold=200, log_counts=True, ax=ax, histogram2d_args=dict(bins=40), plot_args=dict(marker=',', linestyle='none', color='black'), contour_args=dict(cmap=plt.cm.bone)) ax.set_xlabel(r'${\rm g - r}$') ax.set_ylabel(r'${\rm r - i}$') ax.set_xlim(-0.6, 2.5) ax.set_ylim(-0.6, 2.5) plt.show() z = dr12q['Z_VI'] r = dr12q['PSFMAG_2'] i = dr12q['PSFMAG_3'] fig, ax = plt.subplots(figsize=(5, 3.75)) scatter_contour(z, r - i, threshold=1000, log_counts=True, ax=ax, histogram2d_args=dict(bins=40), plot_args=dict(marker=',', linestyle='none', color='black'), contour_args=dict(cmap=plt.cm.bone)) ax.set_xlim(0, 5) ax.set_ylim(-0.5, 1.0) ax.set_xlabel(r'${\rm redshift}$') ax.set_ylabel(r'${\rm r-i}$') plt.show() Example of HealPix pixellization -------------------------------- Figure 1.15. The top panel shows HEALPix pixels in nested order. The 12 fundamental sky divisions can be seen, as well as the hierarchical nature of the smaller pixels. This shows a pixelization with nside = 4, that is, each of the 12 large regions has 4 x 4 pixels, for a total of 192 pixels. The lower panel shows a seven-year co-add of raw WMAP data, plotted using the HEALPix projection using the HealPy package. This particular realization has nside = 512, for a total of 3,145,728 pixels. The pixels are roughly 6.8 arcminutes on a side. # Author: Jake VanderPlas # License: BSD # The figure produced by this code is published in the textbook # "Statistics, Data Mining, and Machine Learning in Astronomy" (2013) # For more information, see http://astroML.github.com # To report a bug or issue, use the following forum: # https://groups.google.com/forum/#!forum/astroml-general from __future__ import print_function import numpy as np from matplotlib import pyplot as plt # warning: due to a bug in healpy, importing it before pylab can cause # a segmentation fault in some circumstances. import healpy as hp from astroML.datasets import fetch_wmap_temperatures #---------------------------------------------------------------------- # This function adjusts matplotlib settings for a uniform feel in the textbook. # Note that with usetex=True, fonts are rendered with LaTeX. This may # result in an error if LaTeX is not installed on your system. In that case, # you can set usetex to False. from astroML.plotting import setup_text_plots setup_text_plots(fontsize=8, usetex=True) #------------------------------------------------------------ # Next plot the wmap pixellization wmap_unmasked = fetch_wmap_temperatures(masked=False) # plot the unmasked map fig = plt.figure(2, figsize=(10, 7.5)) hp.mollview(wmap_unmasked, min=-1, max=1, title='Raw WMAP data', unit=r'$\Delta$T (mK)', fig=2) plt.show() from mpl_toolkits.basemap import Basemap from matplotlib.collections import PolyCollection def plot_sky(ra, dec, data=None, nside=16, label='', projection='eck4', cmap=plt.get_cmap('jet'), norm=None, hide_galactic_plane=False): # get pixel area in degrees pixel_area = hp.pixelfunc.nside2pixarea(nside, degrees=True) # find healpixels associated with input vectors pixels = hp.ang2pix(nside, 0.5*np.pi-np.radians(dec), np.radians(ra)) # find unique pixels unique_pixels = np.unique(pixels) # count number of points in each pixel bincounts = np.bincount(pixels) # if no data provided, show counts per sq degree # otherwise, show mean per pixel if data is None: values = bincounts[unique_pixels]/pixel_area else: weighted_counts = np.bincount(pixels, weights=data) values = weighted_counts[unique_pixels]/bincounts[unique_pixels] # find pixel boundaries corners = hp.boundaries(nside, unique_pixels, step=1) corner_theta, corner_phi = hp.vec2ang(corners.transpose(0,2,1)) corner_ra, corner_dec = np.degrees(corner_phi), np.degrees(np.pi/2-corner_theta) # set up basemap m = Basemap(projection=projection, lon_0=90, resolution='l', celestial=True) m.drawmeridians(np.arange(0, 360, 30), labels=[0,0,1,0], labelstyle='+/-') m.drawparallels(np.arange(-90, 90, 15), labels=[1,0,0,0], labelstyle='+/-') m.drawmapboundary() # convert sky coords to map coords x,y = m(corner_ra, corner_dec) # regroup into pixel corners verts = np.array([x.reshape(-1,4), y.reshape(-1,4)]).transpose(1,2,0) # Make the collection and add it to the plot. coll = PolyCollection(verts, array=values, cmap=cmap, norm=norm, edgecolors='none') plt.gca().add_collection(coll) plt.gca().autoscale_view() if not hide_galactic_plane: from astropy.coordinates import SkyCoord import astropy.units as u # generate vector in galactic coordinates and convert to equatorial coordinates galactic_l = np.linspace(0, 2*np.pi, 1000) galactic_plane = SkyCoord(l=galactic_l*u.radian, b=np.zeros_like(galactic_l)*u.radian, frame='galactic').fk5 # project to map coordinates galactic_x, galactic_y = m(galactic_plane.ra.degree, galactic_plane.dec.degree) m.scatter(galactic_x, galactic_y, marker='.', s=2, c='k') # Add a colorbar for the PolyCollection plt.colorbar(coll, orientation='horizontal', pad=0.01, aspect=40, label=label) return m plt.figure(figsize=(12,9)) plot_sky(dr12q['RA'].data, dr12q['DEC'].data, label='Number of quasars per square degree') plt.show() import seaborn as sns z = dr12q['Z_VI'] r = dr12q['PSFMAG_2'] i = dr12q['PSFMAG_3'] fig, ax = plt.subplots(figsize=(5, 3.75)) scatter_contour(z, r - i, threshold=1000, log_counts=True, ax=ax, histogram2d_args=dict(bins=40), plot_args=dict(marker=',', linestyle='none', color='black'), contour_args=dict(cmap=plt.cm.bone)) ax.set_xlim(0, 5) ax.set_ylim(-0.5, 1.0) ax.set_xlabel(r'${\rm redshift}$') ax.set_ylabel(r'${\rm r-i}$') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Set up default parameters. We use 32 subjects, which is the median sample size of the set of fMRI studies published between 2011 and 2015 that were estimated from Neurosynth in the paper. We use a heuristic correction for multiple comparisons of p<0.001 and 10 voxels, like that show by Eklund et al. (2016, PNAS) to result in Type I error rates of 0.6-0.9. Step2: In order to recreate the figure from the paper exactly, we need to fix the random seed so that it will generate exactly the same random data. If you wish to generate new data, then set the recreate_paper_figure variable to False and rerun the notebook. Step3: Use the standard MNI152 2mm brain mask as the mask for the generated data Step4: Generate a dataset for each subject. fMRI data within the mask are generated using a Gaussian distribution (mean=1000, standard deviation=100). Behavioral data are generated using a Gaussian distribution (mean=100, standard deviation=1). Step5: Spatially smooth data using a 6 mm FWHM Gaussian kernel Step6: Use FSL's GLM tool to run a regression at each voxel Step7: Use FSL's cluster tool to identify clusters of activation that exceed the specified cluster-forming threshold Step8: Generate a plot showing the brain-behavior relation from the top cluster Step9: Generate a thresholded statistics image for display Step10: Generate a figure showing the location of the selected activation focus.
<ASSISTANT_TASK:> Python Code: import numpy import nibabel import os import nilearn.plotting import matplotlib.pyplot as plt from statsmodels.regression.linear_model import OLS import nipype.interfaces.fsl as fsl import scipy.stats if not 'FSLDIR' in os.environ.keys(): raise Exception('This notebook requires that FSL is installed and the FSLDIR environment variable is set') %matplotlib inline pthresh=0.001 # cluster forming threshold cthresh=10 # cluster extent threshold nsubs=32 # number of subjects recreate_paper_figure=True if recreate_paper_figure: seed=61974 else: seed=numpy.ceil(numpy.random.rand()*100000).astype('int') print(seed) numpy.random.seed(seed) maskimg=os.path.join(os.getenv('FSLDIR'),'data/standard/MNI152_T1_2mm_brain_mask.nii.gz') mask=nibabel.load(maskimg) maskdata=mask.get_data() maskvox=numpy.where(maskdata>0) print('Mask includes %d voxels'%len(maskvox[0])) imgmean=1000 # mean activation within mask imgstd=100 # standard deviation of noise within mask behavmean=100 # mean of behavioral regressor behavstd=1 # standard deviation of behavioral regressor data=numpy.zeros((maskdata.shape + (nsubs,))) for i in range(nsubs): tmp=numpy.zeros(maskdata.shape) tmp[maskvox]=numpy.random.randn(len(maskvox[0]))*imgstd+imgmean data[:,:,:,i]=tmp newimg=nibabel.Nifti1Image(data,mask.get_affine(),mask.get_header()) newimg.to_filename('fakedata.nii.gz') regressor=numpy.random.randn(nsubs,1)*behavstd+behavmean numpy.savetxt('regressor.txt',regressor) smoothing_fwhm=6 # FWHM in millimeters smooth=fsl.IsotropicSmooth(fwhm=smoothing_fwhm, in_file='fakedata.nii.gz', out_file='fakedata_smooth.nii.gz') smooth.run() glm = fsl.GLM(in_file='fakedata_smooth.nii.gz', design='regressor.txt', out_t_name='regressor_tstat.nii.gz', demean=True) glm.run() tcut=scipy.stats.t.ppf(1-pthresh,nsubs-1) cl = fsl.Cluster() cl.inputs.threshold = tcut cl.inputs.in_file = 'regressor_tstat.nii.gz' cl.inputs.out_index_file='tstat_cluster_index.nii.gz' results=cl.run() clusterimg=nibabel.load(cl.inputs.out_index_file) clusterdata=clusterimg.get_data() indices=numpy.unique(clusterdata) clustersize=numpy.zeros(len(indices)) clustermean=numpy.zeros((len(indices),nsubs)) indvox={} for c in range(1,len(indices)): indvox[c]=numpy.where(clusterdata==c) clustersize[c]=len(indvox[c][0]) for i in range(nsubs): tmp=data[:,:,:,i] clustermean[c,i]=numpy.mean(tmp[indvox[c]]) corr=numpy.corrcoef(regressor.T,clustermean[-1]) print('Found %d clusters exceeding p<%0.3f and %d voxel extent threshold'%(c,pthresh,cthresh)) print('Largest cluster: correlation=%0.3f, extent = %d voxels'%(corr[0,1],len(indvox[c][0]))) # set cluster to show - 0 is the largest, 1 the second largest, and so on cluster_to_show=0 # translate this variable into the index of indvox cluster_to_show_idx=len(indices)-cluster_to_show-1 # plot the (circular) relation between fMRI signal and # behavioral regressor in the chosen cluster plt.scatter(regressor.T,clustermean[cluster_to_show_idx]) plt.title('Correlation = %0.3f'%corr[0,1],fontsize=14) plt.xlabel('Fake behavioral regressor',fontsize=18) plt.ylabel('Fake fMRI data',fontsize=18) m, b = numpy.polyfit(regressor[:,0], clustermean[cluster_to_show_idx], 1) axes = plt.gca() X_plot = numpy.linspace(axes.get_xlim()[0],axes.get_xlim()[1],100) plt.plot(X_plot, m*X_plot + b, '-') plt.savefig('scatter.png',dpi=600) tstat=nibabel.load('regressor_tstat.nii.gz').get_data() thresh_t=clusterdata.copy() cutoff=numpy.min(numpy.where(clustersize>cthresh)) thresh_t[thresh_t<cutoff]=0 thresh_t=thresh_t*tstat thresh_t_img=nibabel.Nifti1Image(thresh_t,mask.get_affine(),mask.get_header()) mid=len(indvox[cluster_to_show_idx][0])/2 coords=numpy.array([indvox[cluster_to_show_idx][0][mid], indvox[cluster_to_show_idx][1][mid], indvox[cluster_to_show_idx][2][mid],1]).T mni=mask.get_qform().dot(coords) nilearn.plotting.plot_stat_map(thresh_t_img, os.path.join(os.getenv('FSLDIR'),'data/standard/MNI152_T1_2mm_brain.nii.gz'), threshold=cl.inputs.threshold, cut_coords=mni[:3]) plt.savefig('slices.png',dpi=600) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 非ガウス型観測による STS モデルの近似推論 Step2: 合成データ Step3: モデル Step4: このモデルは、観測された時系列で演算する代わりに、観測を管理するポワソン型レートパラメータの系列で演算します。 Step5: 非ガウス型観測モデルに近似推論を使用するために、STS モデルを TFP JointDistribution としてエンコーディングします。この同時分布の確率変数は STS モデル、潜在ポワソン分布レートの時系列、および観測されたカウントのパラメータです。 Step6: 推論の準備 Step7: また、推論が STS モデルのパラメータへの制約(スケールが正であるなど)を考慮するように、制約付きのバイジェクターも必要です。 Step8: HMC による推論 Step9: まず、サンプラーを指定し、sample_chain を使用してサンプルを生成するサンプリングカーネルを実行します。 Step10: パラメータのトレースを調べて、推論のサニティチェックを行います。この場合、データに対し複数の説明が探られたようです。これは良いことではありますが、サンプルが多いほどチェーンの混合状態がどれだけうまく行っているかを判定しやすくなります。 Step11: ようやく成果を見ることができます。ポワソン分布のレートに対する事後分布を見てみましょう!また、観測数に対して 80% の予測間隔もプロットし、この間隔に、実際に観測した数の約 80% が含まれているかを確認します。 Step13: 予測 Step14: VI 推論
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import matplotlib.pyplot as plt import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability import bijectors as tfb from tensorflow_probability import distributions as tfd tf.enable_v2_behavior() num_timesteps = 30 observed_counts = np.round(3 + np.random.lognormal(np.log(np.linspace( num_timesteps, 5, num=num_timesteps)), 0.20, size=num_timesteps)) observed_counts = observed_counts.astype(np.float32) plt.plot(observed_counts) def build_model(approximate_unconstrained_rates): trend = tfp.sts.LocalLinearTrend( observed_time_series=approximate_unconstrained_rates) return tfp.sts.Sum([trend], observed_time_series=approximate_unconstrained_rates) positive_bijector = tfb.Softplus() # Or tfb.Exp() # Approximate the unconstrained Poisson rate just to set heuristic priors. # We could avoid this by passing explicit priors on all model params. approximate_unconstrained_rates = positive_bijector.inverse( tf.convert_to_tensor(observed_counts) + 0.01) sts_model = build_model(approximate_unconstrained_rates) def sts_with_poisson_likelihood_model(): # Encode the parameters of the STS model as random variables. param_vals = [] for param in sts_model.parameters: param_val = yield param.prior param_vals.append(param_val) # Use the STS model to encode the log- (or inverse-softplus) # rate of a Poisson. unconstrained_rate = yield sts_model.make_state_space_model( num_timesteps, param_vals) rate = positive_bijector.forward(unconstrained_rate[..., 0]) observed_counts = yield tfd.Poisson(rate, name='observed_counts') model = tfd.JointDistributionCoroutineAutoBatched(sts_with_poisson_likelihood_model) pinned_model = model.experimental_pin(observed_counts=observed_counts) constraining_bijector = pinned_model.experimental_default_event_space_bijector() #@title Sampler configuration # Allow external control of sampling to reduce test runtimes. num_results = 500 # @param { isTemplate: true} num_results = int(num_results) num_burnin_steps = 100 # @param { isTemplate: true} num_burnin_steps = int(num_burnin_steps) sampler = tfp.mcmc.TransformedTransitionKernel( tfp.mcmc.NoUTurnSampler( target_log_prob_fn=pinned_model.unnormalized_log_prob, step_size=0.1), bijector=constraining_bijector) adaptive_sampler = tfp.mcmc.DualAveragingStepSizeAdaptation( inner_kernel=sampler, num_adaptation_steps=int(0.8 * num_burnin_steps), target_accept_prob=0.75) initial_state = constraining_bijector.forward( type(pinned_model.event_shape)( *(tf.random.normal(part_shape) for part_shape in constraining_bijector.inverse_event_shape( pinned_model.event_shape)))) # Speed up sampling by tracing with `tf.function`. @tf.function(autograph=False, jit_compile=True) def do_sampling(): return tfp.mcmc.sample_chain( kernel=adaptive_sampler, current_state=initial_state, num_results=num_results, num_burnin_steps=num_burnin_steps, trace_fn=None) t0 = time.time() samples = do_sampling() t1 = time.time() print("Inference ran in {:.2f}s.".format(t1-t0)) f = plt.figure(figsize=(12, 4)) for i, param in enumerate(sts_model.parameters): ax = f.add_subplot(1, len(sts_model.parameters), i + 1) ax.plot(samples[i]) ax.set_title("{} samples".format(param.name)) param_samples = samples[:-1] unconstrained_rate_samples = samples[-1][..., 0] rate_samples = positive_bijector.forward(unconstrained_rate_samples) plt.figure(figsize=(10, 4)) mean_lower, mean_upper = np.percentile(rate_samples, [10, 90], axis=0) pred_lower, pred_upper = np.percentile(np.random.poisson(rate_samples), [10, 90], axis=0) _ = plt.plot(observed_counts, color="blue", ls='--', marker='o', label='observed', alpha=0.7) _ = plt.plot(np.mean(rate_samples, axis=0), label='rate', color="green", ls='dashed', lw=2, alpha=0.7) _ = plt.fill_between(np.arange(0, 30), mean_lower, mean_upper, color='green', alpha=0.2) _ = plt.fill_between(np.arange(0, 30), pred_lower, pred_upper, color='grey', label='counts', alpha=0.2) plt.xlabel("Day") plt.ylabel("Daily Sample Size") plt.title("Posterior Mean") plt.legend() def sample_forecasted_counts(sts_model, posterior_latent_rates, posterior_params, num_steps_forecast, num_sampled_forecasts): # Forecast the future latent unconstrained rates, given the inferred latent # unconstrained rates and parameters. unconstrained_rates_forecast_dist = tfp.sts.forecast(sts_model, observed_time_series=unconstrained_rate_samples, parameter_samples=posterior_params, num_steps_forecast=num_steps_forecast) # Transform the forecast to positive-valued Poisson rates. rates_forecast_dist = tfd.TransformedDistribution( unconstrained_rates_forecast_dist, positive_bijector) # Sample from the forecast model following the chain rule: # P(counts) = P(counts | latent_rates)P(latent_rates) sampled_latent_rates = rates_forecast_dist.sample(num_sampled_forecasts) sampled_forecast_counts = tfd.Poisson(rate=sampled_latent_rates).sample() return sampled_forecast_counts, sampled_latent_rates forecast_samples, rate_samples = sample_forecasted_counts( sts_model, posterior_latent_rates=unconstrained_rate_samples, posterior_params=param_samples, # Days to forecast: num_steps_forecast=30, num_sampled_forecasts=100) forecast_samples = np.squeeze(forecast_samples) def plot_forecast_helper(data, forecast_samples, CI=90): Plot the observed time series alongside the forecast. plt.figure(figsize=(10, 4)) forecast_median = np.median(forecast_samples, axis=0) num_steps = len(data) num_steps_forecast = forecast_median.shape[-1] plt.plot(np.arange(num_steps), data, lw=2, color='blue', linestyle='--', marker='o', label='Observed Data', alpha=0.7) forecast_steps = np.arange(num_steps, num_steps+num_steps_forecast) CI_interval = [(100 - CI)/2, 100 - (100 - CI)/2] lower, upper = np.percentile(forecast_samples, CI_interval, axis=0) plt.plot(forecast_steps, forecast_median, lw=2, ls='--', marker='o', color='orange', label=str(CI) + '% Forecast Interval', alpha=0.7) plt.fill_between(forecast_steps, lower, upper, color='orange', alpha=0.2) plt.xlim([0, num_steps+num_steps_forecast]) ymin, ymax = min(np.min(forecast_samples), np.min(data)), max(np.max(forecast_samples), np.max(data)) yrange = ymax-ymin plt.title("{}".format('Observed time series with ' + str(num_steps_forecast) + ' Day Forecast')) plt.xlabel('Day') plt.ylabel('Daily Sample Size') plt.legend() plot_forecast_helper(observed_counts, forecast_samples, CI=80) surrogate_posterior = tfp.experimental.vi.build_factored_surrogate_posterior( event_shape=pinned_model.event_shape, bijector=constraining_bijector) # Allow external control of optimization to reduce test runtimes. num_variational_steps = 1000 # @param { isTemplate: true} num_variational_steps = int(num_variational_steps) t0 = time.time() losses = tfp.vi.fit_surrogate_posterior(pinned_model.unnormalized_log_prob, surrogate_posterior, optimizer=tf.optimizers.Adam(0.1), num_steps=num_variational_steps) t1 = time.time() print("Inference ran in {:.2f}s.".format(t1-t0)) plt.plot(losses) plt.title("Variational loss") _ = plt.xlabel("Steps") posterior_samples = surrogate_posterior.sample(50) param_samples = posterior_samples[:-1] unconstrained_rate_samples = posterior_samples[-1][..., 0] rate_samples = positive_bijector.forward(unconstrained_rate_samples) plt.figure(figsize=(10, 4)) mean_lower, mean_upper = np.percentile(rate_samples, [10, 90], axis=0) pred_lower, pred_upper = np.percentile( np.random.poisson(rate_samples), [10, 90], axis=0) _ = plt.plot(observed_counts, color='blue', ls='--', marker='o', label='observed', alpha=0.7) _ = plt.plot(np.mean(rate_samples, axis=0), label='rate', color='green', ls='dashed', lw=2, alpha=0.7) _ = plt.fill_between( np.arange(0, 30), mean_lower, mean_upper, color='green', alpha=0.2) _ = plt.fill_between(np.arange(0, 30), pred_lower, pred_upper, color='grey', label='counts', alpha=0.2) plt.xlabel('Day') plt.ylabel('Daily Sample Size') plt.title('Posterior Mean') plt.legend() forecast_samples, rate_samples = sample_forecasted_counts( sts_model, posterior_latent_rates=unconstrained_rate_samples, posterior_params=param_samples, # Days to forecast: num_steps_forecast=30, num_sampled_forecasts=100) forecast_samples = np.squeeze(forecast_samples) plot_forecast_helper(observed_counts, forecast_samples, CI=80) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Configure environment settings Step2: Importing the dataset into BigQuery Step3: Explore the Covertype dataset Step4: Create training and validation splits Step5: Create a validation split Step6: Develop a training application Step7: Convert all numeric features to float64 Step8: Run the pipeline locally. Step9: Calculate the trained model's accuracy. Step10: Prepare the hyperparameter tuning application. Step11: Write the tuning script. Step12: Package the script into a docker image. Step13: Build the docker image. Step14: Submit an AI Platform hyperparameter tuning job Step15: Start the hyperparameter tuning job. Step16: Monitor the job. Step17: Retrieve HP-tuning results. Step18: The returned run results are sorted by a value of the optimization metric. The best run is the first item on the returned list. Step19: Retrain the model with the best hyperparameters Step20: Examine the training output Step21: Deploy the model to AI Platform Prediction Step22: Create a model version Step23: Serve predictions Step24: Invoke the model
<ASSISTANT_TASK:> Python Code: import json import os import pickle import tempfile import time import uuid from typing import NamedTuple import numpy as np import pandas as pd from google.cloud import bigquery from googleapiclient import discovery, errors from jinja2 import Template from kfp.components import func_to_container_op from sklearn.compose import ColumnTransformer from sklearn.linear_model import SGDClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder, StandardScaler !(gsutil ls | grep kubeflow) REGION = "us-central1" ARTIFACT_STORE = "gs://qwiklabs-gcp-00-97cd915af2d6-kubeflowpipelines-default" PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] os.environ["PROJECT_ID"] = PROJECT_ID DATA_ROOT = f"{ARTIFACT_STORE}/data" JOB_DIR_ROOT = f"{ARTIFACT_STORE}/jobs" TRAINING_FILE_PATH = "{}/{}/{}".format(DATA_ROOT, "training", "dataset.csv") VALIDATION_FILE_PATH = "{}/{}/{}".format(DATA_ROOT, "validation", "dataset.csv") %%bash DATASET_LOCATION=US DATASET_ID=covertype_dataset TABLE_ID=covertype DATA_SOURCE=gs://workshop-datasets/covertype/small/dataset.csv SCHEMA=Elevation:INTEGER,\ Aspect:INTEGER,\ Slope:INTEGER,\ Horizontal_Distance_To_Hydrology:INTEGER,\ Vertical_Distance_To_Hydrology:INTEGER,\ Horizontal_Distance_To_Roadways:INTEGER,\ Hillshade_9am:INTEGER,\ Hillshade_Noon:INTEGER,\ Hillshade_3pm:INTEGER,\ Horizontal_Distance_To_Fire_Points:INTEGER,\ Wilderness_Area:STRING,\ Soil_Type:STRING,\ Cover_Type:INTEGER bq --location=$DATASET_LOCATION --project_id=$PROJECT_ID mk --dataset $DATASET_ID bq --project_id=$PROJECT_ID --dataset_id=$DATASET_ID load \ --source_format=CSV \ --skip_leading_rows=1 \ --replace \ $TABLE_ID \ $DATA_SOURCE \ $SCHEMA %%bigquery SELECT * FROM `covertype_dataset.covertype` !bq query \ -n 0 \ --destination_table covertype_dataset.training \ --replace \ --use_legacy_sql=false \ 'SELECT * \ FROM `covertype_dataset.covertype` AS cover \ WHERE \ MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (1, 2, 3, 4)' !bq extract \ --destination_format CSV \ covertype_dataset.training \ $TRAINING_FILE_PATH !bq query \ -n 0 \ --destination_table covertype_dataset.validation \ --replace \ --use_legacy_sql=false \ 'SELECT * \ FROM `covertype_dataset.covertype` AS cover \ WHERE \ MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), 10) IN (8)' !bq extract \ --destination_format CSV \ covertype_dataset.validation \ $VALIDATION_FILE_PATH df_train = pd.read_csv(TRAINING_FILE_PATH) df_validation = pd.read_csv(VALIDATION_FILE_PATH) print(df_train.shape) print(df_validation.shape) numeric_feature_indexes = slice(0, 10) categorical_feature_indexes = slice(10, 12) preprocessor = ColumnTransformer( transformers=[ ("num", StandardScaler(), numeric_feature_indexes), ("cat", OneHotEncoder(), categorical_feature_indexes), ] ) pipeline = Pipeline( [ ("preprocessor", preprocessor), ("classifier", SGDClassifier(loss="log", tol=1e-3)), ] ) num_features_type_map = { feature: "float64" for feature in df_train.columns[numeric_feature_indexes] } df_train = df_train.astype(num_features_type_map) df_validation = df_validation.astype(num_features_type_map) X_train = df_train.drop("Cover_Type", axis=1) y_train = df_train["Cover_Type"] X_validation = df_validation.drop("Cover_Type", axis=1) y_validation = df_validation["Cover_Type"] pipeline.set_params(classifier__alpha=0.001, classifier__max_iter=200) pipeline.fit(X_train, y_train) accuracy = pipeline.score(X_validation, y_validation) print(accuracy) TRAINING_APP_FOLDER = "training_app" os.makedirs(TRAINING_APP_FOLDER, exist_ok=True) %%writefile {TRAINING_APP_FOLDER}/train.py # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import subprocess import sys import fire import pickle import numpy as np import pandas as pd import hypertune from sklearn.compose import ColumnTransformer from sklearn.linear_model import SGDClassifier from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, OneHotEncoder def train_evaluate(job_dir, training_dataset_path, validation_dataset_path, alpha, max_iter, hptune): df_train = pd.read_csv(training_dataset_path) df_validation = pd.read_csv(validation_dataset_path) if not hptune: df_train = pd.concat([df_train, df_validation]) numeric_feature_indexes = slice(0, 10) categorical_feature_indexes = slice(10, 12) preprocessor = ColumnTransformer( transformers=[ ('num', StandardScaler(), numeric_feature_indexes), ('cat', OneHotEncoder(), categorical_feature_indexes) ]) pipeline = Pipeline([ ('preprocessor', preprocessor), ('classifier', SGDClassifier(loss='log',tol=1e-3)) ]) num_features_type_map = {feature: 'float64' for feature in df_train.columns[numeric_feature_indexes]} df_train = df_train.astype(num_features_type_map) df_validation = df_validation.astype(num_features_type_map) print('Starting training: alpha={}, max_iter={}'.format(alpha, max_iter)) X_train = df_train.drop('Cover_Type', axis=1) y_train = df_train['Cover_Type'] pipeline.set_params(classifier__alpha=alpha, classifier__max_iter=max_iter) pipeline.fit(X_train, y_train) if hptune: X_validation = df_validation.drop('Cover_Type', axis=1) y_validation = df_validation['Cover_Type'] accuracy = pipeline.score(X_validation, y_validation) print('Model accuracy: {}'.format(accuracy)) # Log it with hypertune hpt = hypertune.HyperTune() hpt.report_hyperparameter_tuning_metric( hyperparameter_metric_tag='accuracy', metric_value=accuracy ) # Save the model if not hptune: model_filename = 'model.pkl' with open(model_filename, 'wb') as model_file: pickle.dump(pipeline, model_file) gcs_model_path = "{}/{}".format(job_dir, model_filename) subprocess.check_call(['gsutil', 'cp', model_filename, gcs_model_path], stderr=sys.stdout) print("Saved model in: {}".format(gcs_model_path)) if __name__ == "__main__": fire.Fire(train_evaluate) %%writefile {TRAINING_APP_FOLDER}/Dockerfile FROM gcr.io/deeplearning-platform-release/base-cpu RUN pip install -U fire cloudml-hypertune scikit-learn==0.20.4 pandas==0.24.2 WORKDIR /app COPY train.py . ENTRYPOINT ["python", "train.py"] IMAGE_NAME = "trainer_image" IMAGE_TAG = "latest" IMAGE_URI = f"gcr.io/{PROJECT_ID}/{IMAGE_NAME}:{IMAGE_TAG}" !gcloud builds submit --tag $IMAGE_URI $TRAINING_APP_FOLDER %%writefile {TRAINING_APP_FOLDER}/hptuning_config.yaml # Copyright 2019 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. trainingInput: hyperparameters: goal: MAXIMIZE maxTrials: 4 maxParallelTrials: 4 hyperparameterMetricTag: accuracy enableTrialEarlyStopping: TRUE params: - parameterName: max_iter type: DISCRETE discreteValues: [ 200, 500 ] - parameterName: alpha type: DOUBLE minValue: 0.00001 maxValue: 0.001 scaleType: UNIT_LINEAR_SCALE JOB_NAME = "JOB_{}".format(time.strftime("%Y%m%d_%H%M%S")) JOB_DIR = "{}/{}".format(JOB_DIR_ROOT, JOB_NAME) SCALE_TIER = "BASIC" !gcloud ai-platform jobs submit training $JOB_NAME \ --region=$REGION \ --job-dir=$JOB_DIR \ --master-image-uri=$IMAGE_URI \ --scale-tier=$SCALE_TIER \ --config $TRAINING_APP_FOLDER/hptuning_config.yaml \ -- \ --training_dataset_path=$TRAINING_FILE_PATH \ --validation_dataset_path=$VALIDATION_FILE_PATH \ --hptune !gcloud ai-platform jobs describe $JOB_NAME !gcloud ai-platform jobs stream-logs $JOB_NAME ml = discovery.build("ml", "v1") job_id = f"projects/{PROJECT_ID}/jobs/{JOB_NAME}" request = ml.projects().jobs().get(name=job_id) try: response = request.execute() except errors.HttpError as err: print(err) except: print("Unexpected error") response response["trainingOutput"]["trials"][0] alpha = response["trainingOutput"]["trials"][0]["hyperparameters"]["alpha"] max_iter = response["trainingOutput"]["trials"][0]["hyperparameters"][ "max_iter" ] JOB_NAME = "JOB_{}".format(time.strftime("%Y%m%d_%H%M%S")) JOB_DIR = "{}/{}".format(JOB_DIR_ROOT, JOB_NAME) SCALE_TIER = "BASIC" !gcloud ai-platform jobs submit training $JOB_NAME \ --region=$REGION \ --job-dir=$JOB_DIR \ --master-image-uri=$IMAGE_URI \ --scale-tier=$SCALE_TIER \ -- \ --training_dataset_path=$TRAINING_FILE_PATH \ --validation_dataset_path=$VALIDATION_FILE_PATH \ --alpha=$alpha \ --max_iter=$max_iter \ --nohptune !gcloud ai-platform jobs stream-logs $JOB_NAME !gsutil ls $JOB_DIR model_name = 'forest_cover_classifier' labels = "task=classifier,domain=forestry" !gcloud ai-platform models create $model_name \ --regions=$REGION \ --labels=$labels model_version = 'v01' !gcloud ai-platform versions create {model_version} \ --model={model_name} \ --origin=$JOB_DIR \ --runtime-version=1.15 \ --framework=scikit-learn \ --python-version=3.7 \ --region=global input_file = "serving_instances.json" with open(input_file, "w") as f: for index, row in X_validation.head().iterrows(): f.write(json.dumps(list(row.values))) f.write("\n") !cat $input_file !gcloud ai-platform predict \ --model $model_name \ --version $model_version \ --json-instances $input_file \ --region global <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's load and examine the titanic data with pandas first. Step2: So we have 891 training examples with 10 information columns given. Of course it is not straight forward to use all of them at this point. Step3: Here is how we examine how the selection works. Step4: Gender-Age model Step5: How many missing values are there? Step6: SVM does not allow features with missing values, what do we do? Step7: can you think of better ways to do this? Step8: feature rescaling Step9: Let's examine the selection function of the model. Step10: Create a submission file with the Gender-Age model Step11: We notice again that some of the age value is missing in the test data, and want to fill in the same way as what we did with the training data. Step12: Note here we give the missing values the mean age of the training data. Step13: We use the model above to predict the survive of our test data. Step14: create a file that can be submit to kaggle
<ASSISTANT_TASK:> Python Code: #import all the needed package import numpy as np import scipy as sp import re import pandas as pd import sklearn from sklearn.cross_validation import train_test_split,cross_val_score from sklearn.preprocessing import StandardScaler from sklearn import metrics import matplotlib from matplotlib import pyplot as plt %matplotlib inline from sklearn.svm import SVC data = pd.read_csv('data/train.csv') print data.head() # our target is the survived column y= data['Survived'] print data.shape #add in Sex_male features data['Sex_male']=data.Sex.map({'female':0,'male':1}) data.head() #get the features we indented to use feature_cols=['Pclass','Sex_male'] X=data[feature_cols] X.head() #use the default SVM rbf model model=SVC() scores=cross_val_score(model,X,y,cv=10,scoring='accuracy') print scores, np.mean(scores),np.std(scores) xmin,xmax=X['Pclass'].min()-0.5,X['Pclass'].max()+0.5 ymin,ymax=X['Sex_male'].min()-0.5,X['Sex_male'].max()+0.5 print xmin,xmax,ymin,ymax xx, yy = np.meshgrid(np.linspace(xmin, xmax, 200), np.linspace(ymin, ymax, 200)) model.fit(X,y) Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig=plt.figure(figsize=(20,10)) ax=fig.add_subplot(111) ax.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu,alpha=0.5) ax.scatter(X['Pclass']+np.random.randn(len(X['Pclass']))*0.1, X['Sex_male']+np.random.randn(len(X['Pclass']))*0.05, c=y,s=40, cmap=plt.cm.RdBu_r) ax.set_xlabel("Pclass") ax.set_ylabel("Sex_male") ax.set_xlim([0.5,3.5]) ax.set_ylim([-0.5,1.5]) plt.show() #use the isnull function to check if there is any missing value in the Age column. pd.isnull(data['Age']).any() print len(data['Age'][pd.isnull(data['Age'])]) data['Age'][pd.isnull(data['Age'])]=data['Age'].mean() #generate our new feature feature_cols=['Age','Sex_male'] X=data[feature_cols] X.head() #use the default SVM rbf model scores=cross_val_score(model,X,y,cv=10,scoring='accuracy') print scores, np.mean(scores),np.std(scores) X['Age']=(X['Age']-X['Age'].median())/X['Age'].std() #X = StandardScaler().fit_transform(X) scores=cross_val_score(model,X,y,cv=10,scoring='accuracy') print scores, np.mean(scores),np.std(scores) xmin,xmax=X['Age'].min()-0.5,X['Age'].max()+0.5 ymin,ymax=X['Sex_male'].min()-0.5,X['Sex_male'].max()+0.5 print xmin,xmax,ymin,ymax xx, yy = np.meshgrid(np.linspace(xmin, xmax, 200), np.linspace(ymin, ymax, 200)) model.fit(X,y) Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) fig=plt.figure(figsize=(20,10)) ax=fig.add_subplot(111) ax.pcolormesh(xx, yy, -Z, cmap=plt.cm.RdBu,alpha=0.5) ax.scatter(X['Age'], X['Sex_male']+np.random.randn(len(X['Age']))*0.05, c=y,s=40, cmap=plt.cm.RdBu_r) ax.set_xlabel("Normalized Age") ax.set_ylabel("Sex_male") ax.set_ylim([-0.5,1.5]) ax.set_xlim([-3,4.5]) plt.show() test_data = pd.read_csv('data/test.csv') #print test_data.head() #add in Sex_male features test_data['Sex_male']=test_data.Sex.map({'female':0,'male':1}) #use the isnull function to check if there is any missing value in the Age column. pd.isnull(test_data['Age']).any() print len(test_data['Age'][pd.isnull(test_data['Age'])]) test_data['Age'][pd.isnull(test_data['Age'])]=data['Age'].mean() #generate our new feature X_test=test_data[feature_cols] X_test['Age']=(X_test['Age']-data['Age'].median())/data['Age'].std() y_pred=model.predict(X_test) X_test.head() samplesubmit = pd.read_csv("data/titanic_submit_example.csv") #samplesubmit.head() samplesubmit["Survived"]=y_pred #samplesubmit.to_csv samplesubmit.to_csv("data/titanic_submit_gender_age.csv",index=False) samplesubmit.head() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Import data from Google Clod Storage Step2: Prepare data for ARIMA Step3: Let's create a column for weekly returns. Take the log to of the returns to normalize large fluctuations. Step4: Test for stationarity of the udiff series Step5: With a p-value < 0.05, we can reject the null hypotehsis. This data set is stationary. Step6: The table below summarizes the patterns of the ACF and PACF. Step7: Our model doesn't do a good job predicting variance in the original data (peaks and valleys). Step8: Let's make a forecast 2 weeks ahead
<ASSISTANT_TASK:> Python Code: !pip install --user statsmodels %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import numpy as np import datetime %config InlineBackend.figure_format = 'retina' df = pd.read_csv('gs://cloud-training/ai4f/AAPL10Y.csv') df['date'] = pd.to_datetime(df['date']) df.sort_values('date', inplace=True) df.set_index('date', inplace=True) print(df.shape) df.head() df_week = df.resample('w').mean() df_week = df_week[['close']] df_week.head() df_week['weekly_ret'] = np.log(df_week['close']).diff() df_week.head() # drop null rows df_week.dropna(inplace=True) df_week.weekly_ret.plot(kind='line', figsize=(12, 6)); udiff = df_week.drop(['close'], axis=1) udiff.head() import statsmodels.api as sm from statsmodels.tsa.stattools import adfuller rolmean = udiff.rolling(20).mean() rolstd = udiff.rolling(20).std() plt.figure(figsize=(12, 6)) orig = plt.plot(udiff, color='blue', label='Original') mean = plt.plot(rolmean, color='red', label='Rolling Mean') std = plt.plot(rolstd, color='black', label = 'Rolling Std Deviation') plt.title('Rolling Mean & Standard Deviation') plt.legend(loc='best') plt.show(block=False) # Perform Dickey-Fuller test dftest = sm.tsa.adfuller(udiff.weekly_ret, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']) for key, value in dftest[4].items(): dfoutput['Critical Value ({0})'.format(key)] = value dfoutput from statsmodels.graphics.tsaplots import plot_acf # the autocorrelation chart provides just the correlation at increasing lags fig, ax = plt.subplots(figsize=(12,5)) plot_acf(udiff.values, lags=10, ax=ax) plt.show() from statsmodels.graphics.tsaplots import plot_pacf fig, ax = plt.subplots(figsize=(12,5)) plot_pacf(udiff.values, lags=10, ax=ax) plt.show() from statsmodels.tsa.arima.model import ARIMA # Notice that you have to use udiff - the differenced data rather than the original data. ar1 = ARIMA(udiff.values, order = (3, 0,1)).fit() ar1.summary() plt.figure(figsize=(12, 8)) plt.plot(udiff.values, color='blue') preds = ar1.fittedvalues plt.plot(preds, color='red') plt.show() steps = 2 forecast = ar1.forecast(steps=steps) plt.figure(figsize=(12, 8)) plt.plot(udiff.values, color='blue') preds = ar1.fittedvalues plt.plot(preds, color='red') plt.plot(pd.DataFrame(np.array([preds[-1],forecast[0]]).T,index=range(len(udiff.values)+1, len(udiff.values)+3)), color='green') plt.plot(pd.DataFrame(forecast,index=range(len(udiff.values)+1, len(udiff.values)+1+steps)), color='green') plt.title('Display the predictions with the ARIMA model') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We are going to use a simple cnn network as our encoder and decoder. In decoder, we use SpatialFullConvolution (aka deconvolution or convolution transpose) layer to upsample the image to the original resolution. Step2: Get the MNIST Dataset Step3: Define our Training Objective Step4: Compile the Model Step5: Start Training Step6: Let's show the learning curve. Step7: You can also open tensorboard to see this curve. Step8: Explore the Latent Space
<ASSISTANT_TASK:> Python Code: # a bit of setup import numpy as np from bigdl.nn.criterion import * from bigdl.dataset import mnist from zoo.pipeline.api.keras.layers import * from zoo.pipeline.api.keras.models import Model from zoo.pipeline.api.keras.utils import * import datetime as dt IMAGE_SIZE = 784 IMAGE_ROWS = 28 IMAGE_COLS = 28 IMAGE_CHANNELS = 1 latent_size = 2 from zoo.common.nncontext import * sc = init_nncontext("Variational Autoencoder Example") def get_encoder(latent_size): input0 = Input(shape=(IMAGE_CHANNELS, IMAGE_COLS, IMAGE_ROWS)) #CONV conv1 = Convolution2D(16, 5, 5, input_shape=(IMAGE_CHANNELS, IMAGE_ROWS, IMAGE_COLS), border_mode='same', subsample=(2, 2))(input0) relu1 = LeakyReLU()(conv1) conv2 = Convolution2D(32, 5, 5, input_shape=(16, 14, 14), border_mode='same', subsample=(2, 2))(relu1) relu2 = LeakyReLU()(conv2) # 32,7,7 reshape = Flatten()(relu2) #fully connected to output mean vector and log-variance vector reshape = Reshape([7*7*32])(relu2) z_mean = Dense(latent_size)(reshape) z_log_var = Dense(latent_size)(reshape) model = Model([input0],[z_mean,z_log_var]) return model def get_decoder(latent_size): input0 = Input(shape=(latent_size,)) reshape0 = Dense(1568)(input0) reshape1 = Reshape((32, 7, 7))(reshape0) relu0 = Activation('relu')(reshape1) # use resize and conv layer instead of deconv layer resize1 = ResizeBilinear(14,14)(relu0) deconv1 = Convolution2D(16, 5, 5, subsample=(1, 1), activation='relu', border_mode = 'same', input_shape=(32, 14, 14))(resize1) resize2 = ResizeBilinear(28,28)(deconv1) deconv2 = Convolution2D(1, 5, 5, subsample=(1, 1), input_shape=(16, 28, 28), border_mode = 'same')(resize2) outputs = Activation('sigmoid')(deconv2) model = Model([input0],[outputs]) return model def get_autoencoder(latent_size): input0 = Input(shape=(IMAGE_CHANNELS, IMAGE_COLS, IMAGE_ROWS)) encoder = get_encoder(latent_size)(input0) sample = GaussianSampler()(encoder) decoder_model = get_decoder(latent_size) decoder = decoder_model(sample) model = Model([input0],[encoder,decoder]) return model,decoder_model autoencoder,decoder_model = get_autoencoder(2) def get_mnist(sc, mnist_path): (train_images, train_labels) = mnist.read_data_sets(mnist_path, "train") train_images = np.reshape(train_images, (60000, 1, 28, 28)) rdd_train_images = sc.parallelize(train_images) rdd_train_sample = rdd_train_images.map(lambda img: Sample.from_ndarray( (img > 128) * 1.0, [(img > 128) * 1.0, (img > 128) * 1.0])) return rdd_train_sample mnist_path = "datasets/mnist" # please replace this train_data = get_mnist(sc, mnist_path) # (train_images, train_labels) = mnist.read_data_sets(mnist_path, "train") batch_size = 100 criterion = ParallelCriterion() criterion.add(KLDCriterion(), 1.0) criterion.add(BCECriterion(size_average=False), 1.0/batch_size) autoencoder.compile(optimizer=Adam(0.001), loss=criterion) import os if not os.path.exists("./log"): os.makedirs("./log") app_name='vae-digits-'+dt.datetime.now().strftime("%Y%m%d-%H%M%S") autoencoder.set_tensorboard(log_dir='./log/',app_name=app_name) print("Saving logs to ", app_name) autoencoder.fit(x=train_data, batch_size=batch_size, nb_epoch = 6) import matplotlib matplotlib.use('Agg') %pylab inline import matplotlib.pyplot as plt from matplotlib.pyplot import imshow import numpy as np import datetime as dt train_summary = TrainSummary('./log/', app_name) loss = np.array(train_summary.read_scalar("Loss")) plt.figure(figsize = (12,12)) plt.plot(loss[:,0],loss[:,1],label='loss') plt.xlim(0,loss.shape[0]+10) plt.grid(True) plt.title("loss") from matplotlib.pyplot import imshow img = np.column_stack([decoder_model.forward(np.random.randn(1,2)).reshape(28,28) for s in range(8)]) imshow(img, cmap='gray') # This code snippet references this keras example (https://github.com/keras-team/keras/blob/master/examples/variational_autoencoder.py) from scipy.stats import norm # display a 2D manifold of the digits n = 15 # figure with 15x15 digits digit_size = 28 figure = np.zeros((digit_size * n, digit_size * n)) # linearly spaced coordinates on the unit square were transformed through the inverse CDF (ppf) of the Gaussian # to produce values of the latent variables z, since the prior of the latent space is Gaussian grid_x = norm.ppf(np.linspace(0.05, 0.95, n)) grid_y = norm.ppf(np.linspace(0.05, 0.95, n)) for i, yi in enumerate(grid_x): for j, xi in enumerate(grid_y): z_sample = np.array([[xi, yi]]) x_decoded = decoder_model.forward(z_sample) digit = x_decoded.reshape(digit_size, digit_size) figure[i * digit_size: (i + 1) * digit_size, j * digit_size: (j + 1) * digit_size] = digit plt.figure(figsize=(10, 10)) plt.imshow(figure, cmap='Greys_r') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 就可以下载到,然后可以找到一个叫做meetingminitus.pdf的文件。这个就是我们接下来要用的 Step2: 好。现在来试试我自己用latex写的pdf文档。
<ASSISTANT_TASK:> Python Code: wget https://nostarch.com/download/Automate_the_Boring_Stuff_onlinematerials_v.2.zip import PyPDF2 with open('./automate_online-materials/meetingminutes.pdf', 'rb') as f: pdfreader = PyPDF2.PdfFileReader(f) print(pdfreader.numPages) page0 = pdfreader.getPage(0) page0text = page0.extractText() print(page0text) import PyPDF2 with open('./polarmetal-v28-letter.pdf', 'rb') as f: pdfreader = PyPDF2.PdfFileReader(f) print(pdfreader.numPages) for i in range(0,pdfreader.numPages+1): if i==0: page_number = pdfreader.getPage(i) page_text = page_number.extractText() print(page_text[:100]) 所以说,我们并不能期待它太高。标题和姓名中的空格基本上都被‘吞’掉了。这样的话,对于大篇幅文本,可以说并没什么用处。 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Part 0 Step4: In this lab we will be examining subsets of the tuples we create (e.g., the top rated movies by users). Whenever we examine only a subset of a large dataset, there is the potential that the result will depend on the order we perform operations, such as joins, or how the data is partitioned across the workers. What we want to guarantee is that we always see the same results for a subset, independent of how we manipulate or store the data. Step6: Even though the two lists contain identical tuples, the difference in ordering sometimes yields a different ordering for the sorted RDD (try running the cell repeatedly and see if the results change or the assertion fails). If we only examined the first two elements of the RDD (e.g., using take(2)), then we would observe different answers - that is a really bad outcome as we want identical input data to always yield identical output. A better technique is to sort the RDD by both the key and value, which we can do by combining the key and value into a single string and then sorting on that string. Since the key is an integer and the value is a unicode string, we can use a function to combine them into a single unicode string (e.g., unicode('%.3f' % key) + ' ' + value) before sorting the RDD using sortBy(). Step7: If we just want to look at the first few elements of the RDD in sorted order, we can use the takeOrdered method with the sortFunction we defined. Step9: Part 1 Step10: (1b) Movies with Highest Average Ratings Step11: (1c) Movies with Highest Average Ratings and more than 500 reviews Step12: Using a threshold on the number of reviews is one way to improve the recommendations, but there are many other good ways to improve quality. For example, you could weight ratings by the number of ratings. Step14: After splitting the dataset, your training set has about 293,000 entries and the validation and test sets each have about 97,000 entries (the exact number of entries in each dataset varies slightly due to the random nature of the randomSplit() transformation. Step15: (2c) Using ALS.train() Step16: (2d) Testing Your Model Step17: (2e) Comparing Your Model Step18: You now have code to predict how users will rate movies! Step19: The user ID 0 is unassigned, so we will use it for your ratings. We set the variable myUserID to 0 for you. Next, create a new RDD myRatingsRDD with your ratings for at least 10 movie ratings. Each entry should be formatted as (myUserID, movieID, rating) (i.e., each entry should be formatted in the same way as trainingRDD). As in the original dataset, ratings should be between 1 and 5 (inclusive). If you have not seen at least 10 of these movies, you can increase the parameter passed to take() in the above cell until there are 10 movies that you have seen (or you can also guess what your rating would be for movies you have not seen). Step20: (3b) Add Your Movies to Training Dataset Step21: (3c) Train a Model with Your Ratings Step22: (3d) Check RMSE for the New Model with Your Ratings Step23: (3e) Predict Your Ratings Step24: (3f) Predict Your Ratings
<ASSISTANT_TASK:> Python Code: import sys import os from test_helper import Test baseDir = os.path.join('data') inputPath = os.path.join('cs100', 'lab4', 'small') ratingsFilename = os.path.join(baseDir, inputPath, 'ratings.dat.gz') moviesFilename = os.path.join(baseDir, inputPath, 'movies.dat') numPartitions = 2 rawRatings = sc.textFile(ratingsFilename).repartition(numPartitions) rawMovies = sc.textFile(moviesFilename) def get_ratings_tuple(entry): Parse a line in the ratings dataset Args: entry (str): a line in the ratings dataset in the form of UserID::MovieID::Rating::Timestamp Returns: tuple: (UserID, MovieID, Rating) items = entry.split('::') return int(items[0]), int(items[1]), float(items[2]) def get_movie_tuple(entry): Parse a line in the movies dataset Args: entry (str): a line in the movies dataset in the form of MovieID::Title::Genres Returns: tuple: (MovieID, Title) items = entry.split('::') return int(items[0]), items[1] ratingsRDD = rawRatings.map(get_ratings_tuple).cache() moviesRDD = rawMovies.map(get_movie_tuple).cache() ratingsCount = ratingsRDD.count() moviesCount = moviesRDD.count() print 'There are %s ratings and %s movies in the datasets' % (ratingsCount, moviesCount) print 'Ratings: %s' % ratingsRDD.take(3) print 'Movies: %s' % moviesRDD.take(3) assert ratingsCount == 487650 assert moviesCount == 3883 assert moviesRDD.filter(lambda (id, title): title == 'Toy Story (1995)').count() == 1 assert (ratingsRDD.takeOrdered(1, key=lambda (user, movie, rating): movie) == [(1, 1, 5.0)]) tmp1 = [(1, u'alpha'), (2, u'alpha'), (2, u'beta'), (3, u'alpha'), (1, u'epsilon'), (1, u'delta')] tmp2 = [(1, u'delta'), (2, u'alpha'), (2, u'beta'), (3, u'alpha'), (1, u'epsilon'), (1, u'alpha')] oneRDD = sc.parallelize(tmp1) twoRDD = sc.parallelize(tmp2) oneSorted = oneRDD.sortByKey(True).collect() twoSorted = twoRDD.sortByKey(True).collect() print oneSorted print twoSorted assert set(oneSorted) == set(twoSorted) # Note that both lists have the same elements assert twoSorted[0][0] < twoSorted.pop()[0] # Check that it is sorted by the keys assert oneSorted[0:2] != twoSorted[0:2] # Note that the subset consisting of the first two elements does not match def sortFunction(tuple): Construct the sort string (does not perform actual sorting) Args: tuple: (rating, MovieName) Returns: sortString: the value to sort with, 'rating MovieName' key = unicode('%.3f' % tuple[0]) value = tuple[1] return (key + ' ' + value) print oneRDD.sortBy(sortFunction, True).collect() print twoRDD.sortBy(sortFunction, True).collect() oneSorted1 = oneRDD.takeOrdered(oneRDD.count(),key=sortFunction) twoSorted1 = twoRDD.takeOrdered(twoRDD.count(),key=sortFunction) print 'one is %s' % oneSorted1 print 'two is %s' % twoSorted1 assert oneSorted1 == twoSorted1 # TODO: Replace <FILL IN> with appropriate code # First, implement a helper function `getCountsAndAverages` using only Python def getCountsAndAverages(IDandRatingsTuple): Calculate average rating Args: IDandRatingsTuple: a single tuple of (MovieID, (Rating1, Rating2, Rating3, ...)) Returns: tuple: a tuple of (MovieID, (number of ratings, averageRating)) count = 0 tot = 0.0 for rating in IDandRatingsTuple[1]: tot += rating count += 1; return (IDandRatingsTuple[0], (count, tot/count)) # TEST Number of Ratings and Average Ratings for a Movie (1a) Test.assertEquals(getCountsAndAverages((1, (1, 2, 3, 4))), (1, (4, 2.5)), 'incorrect getCountsAndAverages() with integer list') Test.assertEquals(getCountsAndAverages((100, (10.0, 20.0, 30.0))), (100, (3, 20.0)), 'incorrect getCountsAndAverages() with float list') Test.assertEquals(getCountsAndAverages((110, xrange(20))), (110, (20, 9.5)), 'incorrect getCountsAndAverages() with xrange') # TODO: Replace <FILL IN> with appropriate code # From ratingsRDD with tuples of (UserID, MovieID, Rating) create an RDD with tuples of # the (MovieID, iterable of Ratings for that MovieID) movieIDsWithRatingsRDD = (ratingsRDD .map(lambda x:(x[1], x[2])) .groupByKey()) print 'movieIDsWithRatingsRDD: %s\n' % movieIDsWithRatingsRDD.take(3) # Using `movieIDsWithRatingsRDD`, compute the number of ratings and average rating for each movie to # yield tuples of the form (MovieID, (number of ratings, average rating)) movieIDsWithAvgRatingsRDD = movieIDsWithRatingsRDD.map(getCountsAndAverages) print 'movieIDsWithAvgRatingsRDD: %s\n' % movieIDsWithAvgRatingsRDD.take(3) # To `movieIDsWithAvgRatingsRDD`, apply RDD transformations that use `moviesRDD` to get the movie # names for `movieIDsWithAvgRatingsRDD`, yielding tuples of the form # (average rating, movie name, number of ratings) movieNameWithAvgRatingsRDD = (moviesRDD .join(movieIDsWithAvgRatingsRDD) .map(lambda x: (x[1][1][1], x[1][0], x[1][1][0]))) print 'movieNameWithAvgRatingsRDD: %s\n' % movieNameWithAvgRatingsRDD.take(3) # TEST Movies with Highest Average Ratings (1b) Test.assertEquals(movieIDsWithRatingsRDD.count(), 3615, 'incorrect movieIDsWithRatingsRDD.count() (expected 3615)') movieIDsWithRatingsTakeOrdered = movieIDsWithRatingsRDD.takeOrdered(3) Test.assertTrue(movieIDsWithRatingsTakeOrdered[0][0] == 1 and len(list(movieIDsWithRatingsTakeOrdered[0][1])) == 993, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[0] (expected 993)') Test.assertTrue(movieIDsWithRatingsTakeOrdered[1][0] == 2 and len(list(movieIDsWithRatingsTakeOrdered[1][1])) == 332, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[1] (expected 332)') Test.assertTrue(movieIDsWithRatingsTakeOrdered[2][0] == 3 and len(list(movieIDsWithRatingsTakeOrdered[2][1])) == 299, 'incorrect count of ratings for movieIDsWithRatingsTakeOrdered[2] (expected 299)') Test.assertEquals(movieIDsWithAvgRatingsRDD.count(), 3615, 'incorrect movieIDsWithAvgRatingsRDD.count() (expected 3615)') Test.assertEquals(movieIDsWithAvgRatingsRDD.takeOrdered(3), [(1, (993, 4.145015105740181)), (2, (332, 3.174698795180723)), (3, (299, 3.0468227424749164))], 'incorrect movieIDsWithAvgRatingsRDD.takeOrdered(3)') Test.assertEquals(movieNameWithAvgRatingsRDD.count(), 3615, 'incorrect movieNameWithAvgRatingsRDD.count() (expected 3615)') Test.assertEquals(movieNameWithAvgRatingsRDD.takeOrdered(3), [(1.0, u'Autopsy (Macchie Solari) (1975)', 1), (1.0, u'Better Living (1998)', 1), (1.0, u'Big Squeeze, The (1996)', 3)], 'incorrect movieNameWithAvgRatingsRDD.takeOrdered(3)') # TODO: Replace <FILL IN> with appropriate code # Apply an RDD transformation to `movieNameWithAvgRatingsRDD` to limit the results to movies with # ratings from more than 500 people. We then use the `sortFunction()` helper function to sort by the # average rating to get the movies in order of their rating (highest rating first) movieLimitedAndSortedByRatingRDD = (movieNameWithAvgRatingsRDD .filter(lambda x: x[2] > 500) .sortBy(sortFunction, False)) print 'Movies with highest ratings: %s' % movieLimitedAndSortedByRatingRDD.take(20) # TEST Movies with Highest Average Ratings and more than 500 Reviews (1c) Test.assertEquals(movieLimitedAndSortedByRatingRDD.count(), 194, 'incorrect movieLimitedAndSortedByRatingRDD.count()') Test.assertEquals(movieLimitedAndSortedByRatingRDD.take(20), [(4.5349264705882355, u'Shawshank Redemption, The (1994)', 1088), (4.515798462852263, u"Schindler's List (1993)", 1171), (4.512893982808023, u'Godfather, The (1972)', 1047), (4.510460251046025, u'Raiders of the Lost Ark (1981)', 1195), (4.505415162454874, u'Usual Suspects, The (1995)', 831), (4.457256461232604, u'Rear Window (1954)', 503), (4.45468509984639, u'Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb (1963)', 651), (4.43953006219765, u'Star Wars: Episode IV - A New Hope (1977)', 1447), (4.4, u'Sixth Sense, The (1999)', 1110), (4.394285714285714, u'North by Northwest (1959)', 700), (4.379506641366224, u'Citizen Kane (1941)', 527), (4.375, u'Casablanca (1942)', 776), (4.363975155279503, u'Godfather: Part II, The (1974)', 805), (4.358816276202219, u"One Flew Over the Cuckoo's Nest (1975)", 811), (4.358173076923077, u'Silence of the Lambs, The (1991)', 1248), (4.335826477187734, u'Saving Private Ryan (1998)', 1337), (4.326241134751773, u'Chinatown (1974)', 564), (4.325383304940375, u'Life Is Beautiful (La Vita \ufffd bella) (1997)', 587), (4.324110671936759, u'Monty Python and the Holy Grail (1974)', 759), (4.3096, u'Matrix, The (1999)', 1250)], 'incorrect sortedByRatingRDD.take(20)') trainingRDD, validationRDD, testRDD = ratingsRDD.randomSplit([6, 2, 2], seed=0L) print 'Training: %s, validation: %s, test: %s\n' % (trainingRDD.count(), validationRDD.count(), testRDD.count()) print trainingRDD.take(3) print validationRDD.take(3) print testRDD.take(3) assert trainingRDD.count() == 292716 assert validationRDD.count() == 96902 assert testRDD.count() == 98032 assert trainingRDD.filter(lambda t: t == (1, 914, 3.0)).count() == 1 assert trainingRDD.filter(lambda t: t == (1, 2355, 5.0)).count() == 1 assert trainingRDD.filter(lambda t: t == (1, 595, 5.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 1287, 5.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 594, 4.0)).count() == 1 assert validationRDD.filter(lambda t: t == (1, 1270, 5.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 1193, 5.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 2398, 4.0)).count() == 1 assert testRDD.filter(lambda t: t == (1, 1035, 5.0)).count() == 1 # TODO: Replace <FILL IN> with appropriate code import math def computeError(predictedRDD, actualRDD): Compute the root mean squared error between predicted and actual Args: predictedRDD: predicted ratings for each movie and each user where each entry is in the form (UserID, MovieID, Rating) actualRDD: actual ratings where each entry is in the form (UserID, MovieID, Rating) Returns: RMSE (float): computed RMSE value # Transform predictedRDD into the tuples of the form ((UserID, MovieID), Rating) predictedReformattedRDD = predictedRDD.map(lambda x: ((x[0], x[1]), x[2])) # Transform actualRDD into the tuples of the form ((UserID, MovieID), Rating) actualReformattedRDD = actualRDD.map(lambda x: ((x[0], x[1]), x[2])) # Compute the squared error for each matching entry (i.e., the same (User ID, Movie ID) in each # RDD) in the reformatted RDDs using RDD transformtions - do not use collect() squaredErrorsRDD = (predictedReformattedRDD .join(actualReformattedRDD) .map(lambda x: (x, (x[1][0] - x[1][1])**2))) # Compute the total squared error - do not use collect() totalError = squaredErrorsRDD.values().sum() # Count the number of entries for which you computed the total squared error numRatings = squaredErrorsRDD.count() # Using the total squared error and the number of entries, compute the RMSE return math.sqrt(float(totalError)/numRatings) # sc.parallelize turns a Python list into a Spark RDD. testPredicted = sc.parallelize([ (1, 1, 5), (1, 2, 3), (1, 3, 4), (2, 1, 3), (2, 2, 2), (2, 3, 4)]) testActual = sc.parallelize([ (1, 2, 3), (1, 3, 5), (2, 1, 5), (2, 2, 1)]) testPredicted2 = sc.parallelize([ (2, 2, 5), (1, 2, 5)]) testError = computeError(testPredicted, testActual) print 'Error for test dataset (should be 1.22474487139): %s' % testError testError2 = computeError(testPredicted2, testActual) print 'Error for test dataset2 (should be 3.16227766017): %s' % testError2 testError3 = computeError(testActual, testActual) print 'Error for testActual dataset (should be 0.0): %s' % testError3 # TEST Root Mean Square Error (2b) Test.assertTrue(abs(testError - 1.22474487139) < 0.00000001, 'incorrect testError (expected 1.22474487139)') Test.assertTrue(abs(testError2 - 3.16227766017) < 0.00000001, 'incorrect testError2 result (expected 3.16227766017)') Test.assertTrue(abs(testError3 - 0.0) < 0.00000001, 'incorrect testActual result (expected 0.0)') # TODO: Replace <FILL IN> with appropriate code from pyspark.mllib.recommendation import ALS validationForPredictRDD = validationRDD.map(lambda x: (x[0], x[1])) seed = 5L iterations = 5 regularizationParameter = 0.1 ranks = [4, 8, 12] errors = [0, 0, 0] err = 0 tolerance = 0.02 minError = float('inf') bestRank = -1 bestIteration = -1 for rank in ranks: model = ALS.train(trainingRDD, rank, seed=seed, iterations=iterations, lambda_=regularizationParameter) predictedRatingsRDD = model.predictAll(validationForPredictRDD) error = computeError(predictedRatingsRDD, validationRDD) errors[err] = error err += 1 print 'For rank %s the RMSE is %s' % (rank, error) if error < minError: minError = error bestRank = rank print 'The best model was trained with rank %s' % bestRank # TEST Using ALS.train (2c) Test.assertEquals(trainingRDD.getNumPartitions(), 2, 'incorrect number of partitions for trainingRDD (expected 2)') Test.assertEquals(validationForPredictRDD.count(), 96902, 'incorrect size for validationForPredictRDD (expected 96902)') Test.assertEquals(validationForPredictRDD.filter(lambda t: t == (1, 1907)).count(), 1, 'incorrect content for validationForPredictRDD') Test.assertTrue(abs(errors[0] - 0.883710109497) < tolerance, 'incorrect errors[0]') Test.assertTrue(abs(errors[1] - 0.878486305621) < tolerance, 'incorrect errors[1]') Test.assertTrue(abs(errors[2] - 0.876832795659) < tolerance, 'incorrect errors[2]') # TODO: Replace <FILL IN> with appropriate code myModel = ALS.train(trainingRDD, bestRank, seed=seed, iterations=iterations, lambda_=regularizationParameter) testForPredictingRDD = testRDD.map(lambda x: (x[0], x[1])) predictedTestRDD = myModel.predictAll(testForPredictingRDD) testRMSE = computeError(testRDD, predictedTestRDD) print 'The model had a RMSE on the test set of %s' % testRMSE # TEST Testing Your Model (2d) Test.assertTrue(abs(testRMSE - 0.87809838344) < tolerance, 'incorrect testRMSE') # TODO: Replace <FILL IN> with appropriate code trainingAvgRating = float(trainingRDD.map(lambda x: x[2]).sum()) / trainingRDD.count() print 'The average rating for movies in the training set is %s' % trainingAvgRating testForAvgRDD = testRDD.map(lambda x: (x[0], x[1], trainingAvgRating)) testAvgRMSE = computeError(testRDD, testForAvgRDD) print 'The RMSE on the average set is %s' % testAvgRMSE # TEST Comparing Your Model (2e) Test.assertTrue(abs(trainingAvgRating - 3.57409571052) < 0.000001, 'incorrect trainingAvgRating (expected 3.57409571052)') Test.assertTrue(abs(testAvgRMSE - 1.12036693569) < 0.000001, 'incorrect testAvgRMSE (expected 1.12036693569)') print 'Most rated movies:' print '(average rating, movie name, number of reviews)' for ratingsTuple in movieLimitedAndSortedByRatingRDD.take(50): print ratingsTuple # TODO: Replace <FILL IN> with appropriate code myUserID = 0 # Note that the movie IDs are the *last* number on each line. A common error was to use the number of ratings as the movie ID. myRatedMovies = [ # The format of each line is (myUserID, movie ID, your rating) # For example, to give the movie "Star Wars: Episode IV - A New Hope (1977)" a five rating, you would add the following line: # (myUserID, 260, 5), (myUserID, 54001, 5), # Harry Potter & the Order of the Phoenix (myUserID, 150, 5), # Apollo 13 (myUserID, 1, 4), # Toy Story (myUserID, 2953, 4), # Home Alone 2 (myUserID, 1882, 3), # Godzilla (1998) (myUserID, 5313, 3), # The Scorpion King (myUserID, 260, 2), # Star Wars: Episode IV (myUserID, 8731, 2), # Moulin Rouge (myUserID, 3578, 1), # Gladiator (myUserID, 2028, 1) # Saving Private Ryan ] myRatingsRDD = sc.parallelize(myRatedMovies) print 'My movie ratings: %s' % myRatingsRDD.take(10) # TODO: Replace <FILL IN> with appropriate code trainingWithMyRatingsRDD = trainingRDD.union(myRatingsRDD) print ('The training dataset now has %s more entries than the original training dataset' % (trainingWithMyRatingsRDD.count() - trainingRDD.count())) assert (trainingWithMyRatingsRDD.count() - trainingRDD.count()) == myRatingsRDD.count() # TODO: Replace <FILL IN> with appropriate code myRatingsModel = ALS.train(trainingWithMyRatingsRDD, bestRank, seed=seed, iterations=iterations, lambda_=regularizationParameter) # TODO: Replace <FILL IN> with appropriate code predictedTestMyRatingsRDD = myRatingsModel.predictAll(testForPredictingRDD) testRMSEMyRatings = computeError(testRDD, predictedTestMyRatingsRDD) print 'The model had a RMSE on the test set of %s' % testRMSEMyRatings # TODO: Replace <FILL IN> with appropriate code # Use the Python list myRatedMovies to transform the moviesRDD into an RDD with entries that are pairs # of the form (myUserID, Movie ID) and that does not contain any movies that you have rated. myUnratedMoviesRDD = (moviesRDD .filter(lambda x: x[0] not in [x[1] for x in myRatedMovies]) .map(lambda x: (myUserID, x[0]))) # Use the input RDD, myUnratedMoviesRDD, with myRatingsModel.predictAll() to predict your ratings for the movies predictedRatingsRDD = myRatingsModel.predictAll(myUnratedMoviesRDD) # TODO: Replace <FILL IN> with appropriate code # Transform movieIDsWithAvgRatingsRDD from part (1b), which has the form (MovieID, (number of ratings, average rating)), # into and RDD of the form (MovieID, number of ratings) movieCountsRDD = movieIDsWithAvgRatingsRDD.map(lambda x: (x[0], x[1][0])) # Transform predictedRatingsRDD into an RDD with entries that are pairs of the form (Movie ID, Predicted Rating) predictedRDD = predictedRatingsRDD.map(lambda x: (x[1], x[2])) # Use RDD transformations with predictedRDD and movieCountsRDD to yield an RDD with tuples # of the form (Movie ID, (Predicted Rating, number of ratings)) predictedWithCountsRDD = (predictedRDD.join(movieCountsRDD)) # Use RDD transformations with PredictedWithCountsRDD and moviesRDD to yield an RDD with tuples # of the form (Predicted Rating, Movie Name, number of ratings), for movies with more than 75 ratings ratingsWithNamesRDD = (predictedWithCountsRDD .filter(lambda x: x[1][1] > 75) .join(moviesRDD) .map(lambda x: (x[1][0][0], x[1][1], x[1][0][1]))) predictedHighestRatedMovies = ratingsWithNamesRDD.takeOrdered(20, key=lambda x: -x[0]) print ('My highest rated movies as predicted (for movies with more than 75 reviews):\n%s' % '\n'.join(map(str, predictedHighestRatedMovies))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We need to import here the data, modify them if needed and proceed
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from simmit import smartplus as sim import os dir = os.path.dirname(os.path.realpath('__file__')) umat_name = 'MIPLN' #This is the 5 character code for the periodic homogenization for multlayered composite nstatev = 0 #The number of scalar variables required, everything is stored in sub-phases statevs rho = 1.12 #The density of the material (overall) c_p = 1.64 #The specific heat capacity (overall) nphases = 2 #The number of phases num_file = 0 #The num of the file that contains the subphases psi_rve = 0. theta_rve = 0. phi_rve = 0. props = np.array([nphases, num_file]) NPhases_file = dir + '/data/Nlayers0.dat' NPhases = pd.read_csv(NPhases_file, delimiter=r'\s+', index_col=False, engine='python') NPhases[::] path_data = 'data' path_results = 'results' pathfile = 'path.txt' outputfile = 'results_PLN.txt' sim.solver(umat_name, props, nstatev, psi_rve, theta_rve, phi_rve, rho, c_p, path_data, path_results, pathfile, outputfile) outputfile_macro = dir + '/' + path_results + '/results_PLN_global-0.txt' outputfile_micro1 = dir + '/' + path_results + '/results_PLN_global-0-0.txt' outputfile_micro2 = dir + '/' + path_results + '/results_PLN_global-0-1.txt' fig = plt.figure() e11, e22, e33, e12, e13, e23, s11, s22, s33, s12, s13, s23 = np.loadtxt(outputfile_macro, usecols=(8,9,10,11,12,13,14,15,16,17,18,19), unpack=True) plt.grid(True) plt.plot(e11,s11, c='black') e11, e22, e33, e12, e13, e23, s11, s22, s33, s12, s13, s23 = np.loadtxt(outputfile_micro1, usecols=(8,9,10,11,12,13,14,15,16,17,18,19), unpack=True) plt.grid(True) plt.plot(e11,s11, c='red') e11, e22, e33, e12, e13, e23, s11, s22, s33, s12, s13, s23 = np.loadtxt(outputfile_micro2, usecols=(8,9,10,11,12,13,14,15,16,17,18,19), unpack=True) plt.grid(True) plt.plot(e11,s11, c='blue') plt.xlabel('Strain') plt.ylabel('Stress (MPa)') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: SBML Step2: There are other dialects of SBML prior to FBC 2 which have previously been use to encode COBRA models. The primary ones is the "COBRA" dialect which used the "notes" fields in SBML files. Step3: JSON Step4: MATLAB Step5: If the mat file contains only a single model, cobra can figure out which variable to read from, and the variable_name paramter is unnecessary. Step6: Saving models to mat files is also relatively straightforward
<ASSISTANT_TASK:> Python Code: import cobra.test import os from os.path import join data_dir = cobra.test.data_directory print("mini test files: ") print(", ".join(i for i in os.listdir(data_dir) if i.startswith("mini"))) textbook_model = cobra.test.create_test_model("textbook") ecoli_model = cobra.test.create_test_model("ecoli") salmonella_model = cobra.test.create_test_model("salmonella") cobra.io.read_sbml_model(join(data_dir, "mini_fbc2.xml")) cobra.io.write_sbml_model(textbook_model, "test_fbc2.xml") cobra.io.read_sbml_model(join(data_dir, "mini_cobra.xml")) cobra.io.write_sbml_model(textbook_model, "test_cobra.xml", use_fbc_package=False) cobra.io.load_json_model(join(data_dir, "mini.json")) cobra.io.save_json_model(textbook_model, "test.json") cobra.io.load_matlab_model(join(data_dir, "mini.mat"), variable_name="mini_textbook") cobra.io.load_matlab_model(join(data_dir, "mini.mat")) cobra.io.save_matlab_model(textbook_model, "test.mat") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now let's pretend that we feel there are too many features, and many are probably useless. We only want the top 100 for making our model. Step2: Now let's try fitting a model with the trimmed data set, and see how it performs in cross validation Step3: Perfect cross validation?
<ASSISTANT_TASK:> Python Code: npoints = 100 nfeatures = int(5e4) rng = np.random.default_rng() X = rng.random(size=(npoints, nfeatures)); Y = rng.random(size=(npoints,)) > 0.5 def select_best_features(X, Y, n=100): corrs = np.zeros(X.shape[1]) for ii in range(X.shape[1]): corrs[ii] = np.corrcoef(X[:, ii], Y)[0, 1] top_idxs = np.argsort(np.abs(corrs))[-n:] return top_idxs %%time top_idxs = select_best_features(X, Y, 100) X100 = X[:, top_idxs] from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_validate from sklearn.model_selection import cross_val_score import sklearn.linear_model from sklearn import svm X_train, X_test, y_train, y_test = train_test_split(X100, Y, test_size=0.4, random_state=0) clf = svm.SVC(kernel='linear', C=1).fit(X_train, y_train) print(clf.score(X_test, y_test)) folds = 5 scores = cross_val_score(clf, X100, Y, cv=folds) print(f"{folds}-fold cross validation scores:") print(scores) X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.4, random_state=0) print(f"Input X shape: {X_train.shape}") top_idxs = select_best_features(X_train, y_train, 100) X100 = X_train[:, top_idxs] print(f"output shape: {X100.shape}") # This will be what we check with, after training with the other rows X_holdout = X_test[:, top_idxs] clf = svm.SVC(kernel='linear', C=1).fit(X100, y_train) print(f"Score on holdout set: {clf.score(X_holdout, y_test)}") scores = cross_val_score(clf, X_holdout, y_test, cv=5) print(f"{folds}-fold cross validation scores:") print(scores) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Transforming an input to a known output Step2: relation between input and output is linear Step3: Defining the model to train Step5: Defining a layer with a random number of neurons and inputs Step6: Output of a single untrained neuron Step7: Loss - Mean Squared Error Step8: Minimize Loss by changing parameters of neuron Step9: Training Step10: Line drawn by neuron after training Step11: Prebuilt Optimizers do this job (but a bit more efficient and sohpisticated) Step12: More data points, more noisy Step13: Lines model draws over time Step14: After 500 Steps Step15: Final Step Step16: Understandinging the effect of activation functions Step17: Logictic Regression Step19: We compress output between 0 and 1 using sigmoid to match y Step20: We have 2d input now Step21: Reconsidering the loss function Step22: The same solution using high level Keas API
<ASSISTANT_TASK:> Python Code: !pip install -q tf-nightly-gpu-2.0-preview import tensorflow as tf print(tf.__version__) # a small sanity check, does tf seem to work ok? hello = tf.constant('Hello TF!') print("This works: {}".format(hello)) # this should return True even on Colab tf.test.is_gpu_available() tf.test.is_built_with_cuda() !nvidia-smi tf.executing_eagerly() input = [[-1], [0], [1], [2], [3], [4]] output = [[2], [1], [0], [-1], [-2], [-3]] import matplotlib.pyplot as plt plt.xlabel('input') plt.ylabel('output') plt.plot(input, output, 'ro') plt.plot(input, output) plt.plot(input, output, 'ro') w = tf.constant([[1.5], [-2], [1]], dtype='float32') x = tf.constant([[10, 6, 8]], dtype='float32') b = tf.constant([6], dtype='float32') y = tf.matmul(x, w) + b print(y) from tensorflow.keras.layers import Layer class LinearLayer(Layer): y = w.x + b def __init__(self, units=1, input_dim=1): super(LinearLayer, self).__init__() w_init = tf.random_normal_initializer(stddev=2) self.w = tf.Variable( initial_value = w_init(shape=(input_dim, units), dtype='float32'), trainable=True) b_init = tf.zeros_initializer() self.b = tf.Variable( initial_value = b_init(shape=(units,), dtype='float32'), trainable=True) def call(self, inputs): return tf.matmul(inputs, self.w) + self.b linear_layer = LinearLayer() x = tf.constant(input, dtype=tf.float32) y_true = tf.constant(output, dtype=tf.float32) y_true y_pred = linear_layer(x) y_pred plt.plot(x, y_pred) plt.plot(input, output, 'ro') loss_fn = tf.losses.mean_squared_error # loss_fn = tf.losses.mean_absolute_error loss = loss_fn(y_true=tf.squeeze(y_true), y_pred=tf.squeeze(y_pred)) print(loss) tf.keras.losses.mean_squared_error == tf.losses.mean_squared_error # a simple example # f(x) = x^2 # f'(x) = 2x # x = 4 # f(4) = 16 # f'(4) = 8 (that's what we expect) def tape_sample(): x = tf.constant(4.0) # open a GradientTape with tf.GradientTape() as tape: tape.watch(x) y = x * x dy_dx = tape.gradient(y, x) print(dy_dx) # just a function in order not to interfere with x on the global scope tape_sample() linear_layer = LinearLayer() linear_layer.w, linear_layer.b linear_layer.trainable_weights EPOCHS = 200 learning_rate = 1e-2 losses = [] weights = [] biases = [] weights_gradient = [] biases_gradient = [] for step in range(EPOCHS): with tf.GradientTape() as tape: # forward pass y_pred = linear_layer(x) # loss value for this batch loss = loss_fn(y_true=tf.squeeze(y_true), y_pred=tf.squeeze(y_pred)) # just for logging losses.append(loss.numpy()) weights.append(linear_layer.w.numpy()[0][0]) biases.append(linear_layer.b.numpy()[0]) # get gradients of weights wrt the loss gradients = tape.gradient(loss, linear_layer.trainable_weights) weights_gradient.append(gradients[0].numpy()[0][0]) biases_gradient.append(gradients[1].numpy()[0]) # backward pass, changing trainable weights linear_layer.w.assign_sub(learning_rate * gradients[0]) linear_layer.b.assign_sub(learning_rate * gradients[1]) print(loss) plt.xlabel('epochs') plt.ylabel('loss') # plt.yscale('log') plt.plot(losses) plt.figure(figsize=(20, 10)) plt.plot(weights) plt.plot(biases) plt.plot(weights_gradient) plt.plot(biases_gradient) plt.legend(['slope', 'offset', 'gradient slope', 'gradient offset']) y_pred = linear_layer(x) y_pred plt.plot(x, y_pred) plt.plot(input, output, 'ro') # single neuron and single input: one weight and one bias # slope m ~ -1 # y-axis offset y0 ~ 1 # https://en.wikipedia.org/wiki/Linear_equation#Slope%E2%80%93intercept_form linear_layer.trainable_weights optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2) EPOCHS = 500 losses = [] linear_layer = LinearLayer() for step in range(EPOCHS): with tf.GradientTape() as tape: # Forward pass. y_pred = linear_layer(x) # Loss value for this batch. loss = loss_fn(y_true=tf.squeeze(y_true), y_pred=tf.squeeze(y_pred)) losses.append(loss) # Get gradients of weights wrt the loss. gradients = tape.gradient(loss, linear_layer.trainable_weights) # Update the weights of our linear layer. optimizer.apply_gradients(zip(gradients, linear_layer.trainable_weights)) # plt.yscale('log') plt.ylabel("loss") plt.xlabel("epochs") plt.plot(losses) y_pred = linear_layer(x) plt.plot(x, y_pred) plt.plot(input, output, 'ro') linear_layer.trainable_weights import numpy as np a = -1 b = 1 n = 50 x = tf.constant(np.random.uniform(0, 1, n), dtype='float32') y = tf.constant(a*x+b + 0.1 * np.random.normal(0, 1, n), dtype='float32') plt.scatter(x, y) x = tf.reshape(x, (n, 1)) y_true = tf.reshape(y, (n, 1)) linear_layer = LinearLayer() a = linear_layer.w.numpy()[0][0] b = linear_layer.b.numpy()[0] def plot_line(a, b, x, y_true): fig, ax = plt.subplots() y_pred = a * x + b line = ax.plot(x, y_pred) ax.plot(x, y_true, 'ro') return fig, line plot_line(a, b, x, y_true) # the problem is a little bit harder, train for a little longer EPOCHS = 2000 losses = [] lines = [] linear_layer = LinearLayer() for step in range(EPOCHS): # Open a GradientTape. with tf.GradientTape() as tape: # Forward pass. y_pred = linear_layer(x) # Loss value for this batch. loss = loss_fn(y_true=tf.squeeze(y_true), y_pred=tf.squeeze(y_pred)) losses.append(loss) a = linear_layer.w.numpy()[0][0] b = linear_layer.b.numpy()[0] lines.append((a, b)) # Get gradients of weights wrt the loss. gradients = tape.gradient(loss, linear_layer.trainable_weights) # Update the weights of our linear layer. optimizer.apply_gradients(zip(gradients, linear_layer.trainable_weights)) print(loss) # plt.yscale('log') plt.ylabel("loss") plt.xlabel("epochs") plt.plot(losses) a, b = lines[0] plot_line(a, b, x, y_true) a, b = lines[500] plot_line(a, b, x, y_true) a, b = lines[1999] plot_line(a, b, x, y_true) import numpy as np x = tf.reshape(tf.constant(np.arange(-1, 4, 0.1), dtype='float32'), (50, 1)) y_pred = linear_layer(x) plt.figure(figsize=(20, 10)) plt.plot(x, y_pred) y_pred_relu = tf.nn.relu(y_pred) plt.plot(x, y_pred_relu) y_pred_sigmoid = tf.nn.sigmoid(y_pred) plt.plot(x, y_pred_sigmoid) y_pred_tanh = tf.nn.tanh(y_pred) plt.plot(x, y_pred_tanh) plt.plot(input, output, 'ro') plt.legend(['no activation', 'relu', 'sigmoid', 'tanh']) from matplotlib.colors import ListedColormap a = -1 b = 1 n = 100 # all points X = np.random.uniform(0, 1, (n, 2)) # our line line_x = np.random.uniform(0, 1, n) line_y = a*line_x+b plt.plot(line_x, line_y, 'r') # below and above line y = X[:, 1] > a*X[:, 0]+b y = y.astype(int) plt.xlabel("x1") plt.ylabel("x2") plt.scatter(X[:,0], X[:,1], c=y, cmap=ListedColormap(['#AA6666', '#6666AA']), marker='o', edgecolors='k') y class SigmoidLayer(LinearLayer): y = sigmoid(w.x + b) def __init__(self, **kwargs): super(SigmoidLayer, self).__init__(**kwargs) def call(self, inputs): return tf.sigmoid(super().call(inputs)) x = tf.constant(X, dtype='float32') y_true = tf.constant(y, dtype='float32') x.shape model = SigmoidLayer(input_dim=2) loss_fn = tf.losses.binary_crossentropy # standard optimizer using advanced properties optimizer = tf.keras.optimizers.Adam(learning_rate=1e-1) # https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/metrics/Accuracy m = tf.keras.metrics.Accuracy() EPOCHS = 1000 losses = [] accuracies = [] for step in range(EPOCHS): # Open a GradientTape. with tf.GradientTape() as tape: # Forward pass. y_pred = model(x) # Loss value for this batch. loss = loss_fn(y_true=tf.squeeze(y_true), y_pred=tf.squeeze(y_pred)) y_pred_binary = (tf.squeeze(y_pred) > 0.5).numpy().astype(float) m.update_state(tf.squeeze(y_true), y_pred_binary) accuracy = m.result().numpy() losses.append(loss) accuracies.append(accuracy) # Get gradients of weights wrt the loss. gradients = tape.gradient(loss, model.trainable_weights) # Update the weights of our linear layer. optimizer.apply_gradients(zip(gradients, model.trainable_weights)) print(loss) print(accuracy) plt.yscale('log') plt.ylabel("loss") plt.xlabel("epochs") plt.plot(losses) plt.ylabel("accuracy") plt.xlabel("epochs") plt.plot(accuracies) y_pred = model(x) y_pred_binary = (tf.squeeze(y_pred) > 0.5).numpy().astype(float) y_pred_binary y_true - y_pred_binary # below and above line plt.xlabel("x1") plt.ylabel("x2") plt.scatter(X[:,0], X[:,1], c=y_pred_binary, cmap=ListedColormap(['#AA6666', '#6666AA']), marker='o', edgecolors='k') from tensorflow.keras.layers import Dense model = tf.keras.Sequential() model.add(Dense(units=1, activation='sigmoid', input_dim=2)) model.summary() %%time model.compile(loss=loss_fn, # binary cross entropy, unchanged from low level example optimizer=optimizer, # adam, unchanged from low level example metrics=['accuracy']) # does a similar thing internally as our loop from above history = model.fit(x, y_true, epochs=EPOCHS, verbose=0) loss, accuracy = model.evaluate(x, y_true) loss, accuracy plt.yscale('log') plt.ylabel("accuracy") plt.xlabel("epochs") plt.plot(history.history['accuracy']) plt.yscale('log') plt.ylabel("loss") plt.xlabel("epochs") plt.plot(history.history['loss']) y_pred = model.predict(x) y_pred_binary = (tf.squeeze(y_pred) > 0.5).numpy().astype(float) # below and above line plt.xlabel("x1") plt.ylabel("x2") plt.scatter(X[:,0], X[:,1], c=y_pred_binary, cmap=ListedColormap(['#AA6666', '#6666AA']), marker='o', edgecolors='k') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you look above you can see that we are accessing a csv file that has the locations of the podcasts, taking the html data and parsing it, to look for any words that end with ".mp3" and then enacting our download_mp3 function to download each podcast into it's own folder. I orginally was downlaoding from the top 30 podcasts and transcrbing 11 episodes. Step2: If you ran into problems running the code above, you will need to look into installing your dependencies Step3: What the code above is doing, is taking the the small transcription of a text file, removing useless words (commonly known as stopwords, NLTK has a module for 2400 stopwords, and grouping by word then comparing the differences by taking the word counts for CMU and comparing that to Watson. 143 of the words had the same count, which is a measure of 76% (143 / 186). That was enough for me to go with CMU, as I could also parallelize CMU to run multiple podcasts at a time and not pay for API calls to transcribe. Step4: After a lot of memory-errors and heart-ache I able to transcribe 150 podcasts from 11 different series. In the future I will be adding much more. I was able to take the transcriptions and write them to a no-sql database where I have the filepath, name of the series and the transcription. The dataframe is below Step5: As you can tell it's a fairly small dataframe, but with scaling I will be able to make this a much higher potential (I have 3K podcasts ready to transcribe in an s3 bucket, but need to finish the spark code). Step6: Originally I was using sci-kit learn and tfidf_vectorizer as my method for calcualting the cosine similarity. As per normal, sci-kit learn makes implementation of machine learning models fairly trivial. Step7: That creates a tfidf_matrix of podcast to terms (151 podcasts and 35028 terms). Then we create the cosine similarities Step8: You can see above that we were able to use our linear kernel from scikit learn to transform the tfidf_matrix and get the cosine similarities for every podcast related to every podcast! Step9: I'm creating two functions here Step10: Timing Step11: As mentioned before I originally implemented this model into the flask app, but noticed that for each query we had to recompute the cosine similarities, which wasn't sustainable. Thus I discovered Gensim, Topic Modeling for Humans. Step12: Here I loaded up all my models built off the podcast transcriptions, and built an LSI model with 50 different topics. Below is a sample of 10 of them. Step13: Looking through these topics you can immdiately see that there are some related themes, like 2 which has "republican, conservative, and trump, constitution". In fact, LSI has been tested by having a the machine cluster documents and having humans sort documents, and the results have been very similar. Step14: As you'd expect the speed is much faster without having to continuously do the cosine similarity computation. But also the results from an anecdotal perspective look much more accurate. MLAR is a popualr political podcast so it makes sense that it's been clustered in that politics topic. We can explore this further
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import urllib2 import re import wget import os os.chdir('/Users/sheldon/git/springboard_capstone/acquire_podcasts') df = pd.read_csv('top100_pcasts_locations.csv') urls = df.url.tolist() urls = filter(lambda string: 'feeds.' in string or 'feed.' in string, urls) urls = urls[2:3] def homepage(request): file = urllib2.urlopen(request) data = file.read() file.close() def get_mp3s(data): data = data.split() data = filter(lambda word: word.endswith('.mp3"') , data) data = list(set(data)) return data data = get_mp3s(data) def parse_mp3(urlstring): urlstring = re.split('url=', urlstring)[1] return urlstring.replace('"','') data = map(parse_mp3, data) return data def download_mp3(podcastseries, urls): os.chdir('/Users/sheldon/git/springboard_capstone/acquire_podcasts') os.mkdir(urls.split('/')[-1]) os.chdir(urls.split('/')[-1]) mp3_list = [] def download(episode): print 'downloading: ',episode episode = wget.download(episode) print 'downloaded: ',episode for number, episode in enumerate(podcastseries): if len(mp3_list) < 1: print number, ': ', episode mp3_list.append(episode) download(episode) print 'length: ',len(mp3_list) else: break os.chdir('/Users/sheldon/git/springboard_capstone/acquire_podcasts') for number, series in enumerate(urls): print 'starting: ',number, ' - ',series data = homepage(series) download_mp3(data, series) print 'completed: ',number, ' - ',series from IPython.display import Audio import speech_recognition as sr r = sr.Recognizer() with sr.Microphone() as source: print("Say something!") audio = r.listen(source) %%time print(r.recognize_sphinx(audio)) from nltk.corpus import stopwords from collections import Counter import pandas as pd import numpy as np import nltk.data from __future__ import division # Python 2 users only import nltk, re, pprint from nltk import word_tokenize os.chdir("/Users/sheldon/git/springboard_capstone/") cmu_trans = open('report_assets/transcription_cmu.txt','rU').read() wat_trans = open('report_assets/transcription_watson_2.txt','rU').read() stop = set(stopwords.words('english')) ## Tokenize and Lower the Words def tokenize_and_lower(textfile): tokens = word_tokenize(textfile) lower = [w.lower() for w in tokens] filtered_words = [word for word in lower if word not in stop] series = pd.Series(filtered_words) return series ## Compare results with value counts, presuming that Watson is more accurate than CMU cmu = tokenize_and_lower(cmu_trans) wat = tokenize_and_lower(wat_trans) cmu = pd.Series.to_frame(cmu) wat = pd.Series.to_frame(wat) cmu.columns = [['words']] wat.columns = [['words']] cmu = cmu.groupby('words').size().reset_index() wat = wat.groupby('words').size().reset_index() df = pd.merge(cmu, wat, on='words') df.columns = [['words','cmu','wat']] df['cmu_diff_wat'] = df.cmu - df.wat %matplotlib inline df.cmu_diff_wat.value_counts().plot(kind='bar') df.cmu_diff_wat.value_counts() #example code from pydub import AudioSegment import glob from math import ceil import os import json import csv import sys import speech_recognition as sr r = sr.Recognizer() def transcribe_mp3(AUDIO_FILENAME, AUDIO_SEGMENT_SECONDS): output_file_name = "{}_translation.txt".format(AUDIO_FILENAME) #fuction to transform mp3 file to wav for transcription try: def transform_mp3_wav(AUDIO_FILENAME, AUDIO_SEGMENT_SECONDS): filename = AUDIO_FILENAME.replace('.mp3','') with open(AUDIO_FILENAME): audio = AudioSegment.from_mp3(AUDIO_FILENAME) xs = 0 while xs < audio.duration_seconds: ys = min(xs + AUDIO_SEGMENT_SECONDS, ceil(audio.duration_seconds)) fname = str(xs).rjust(5, '0') + '-' + str(ys).rjust(5, '0') + '.wav' audio[xs*1000:ys*1000].export(os.getcwd() + '/' + filename + fname, format='wav') print("Saved", fname) xs = ys transform_mp3_wav(AUDIO_FILENAME, 300) wav_filename = AUDIO_FILENAME.replace('.mp3','.wav') wav_list = glob.glob('*.wav') wav_list = filter(lambda x: '.mp3' not in x, wav_list) trans_list = [] transcription = None for wav_file in wav_list: print 'transcribing: ' + wav_file with sr.AudioFile(wav_file) as source: audio = r.record(source) transcription = r.recognize_sphinx(audio) print 'transcription completed' trans_list.extend(transcription) transcription = ''.join(trans_list) except: return 'error' for f in wav_list: os.remove(f) file = open(output_file_name,'w') file.write(transcription) file.close() import sqlite3 def connect_db(): return sqlite3.connect('/Users/sheldon/podcasts/test.db') def create_df_object(): conn = sqlite3.connect('/Users/sheldon/podcasts/test.db') df = pd.read_sql("select * from podcast",conn) return df df = create_df_object() df.info() from IPython.display import Image from IPython.core.display import HTML Image(url= "http://blog.christianperone.com/wp-content/uploads/2013/09/cosinesimilarityfq1.png") from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairwise import linear_kernel from nltk.corpus import stopwords from sklearn.feature_extraction.text import TfidfVectorizer tf = TfidfVectorizer(stop_words=stop) tfidf_matrix = tf.fit_transform(df['transcribed']) tfidf_matrix cosine_similarities = linear_kernel(tfidf_matrix, tfidf_matrix) print cosine_similarities print len(cosine_similarities) def get_related_podcasts_scikit(podcast_number,number_of_similarities): cosine_similarities = linear_kernel(tfidf_matrix, tfidf_matrix) related_pod_index = cosine_similarities.argsort()[podcast_number][::-1] pod_dict = dict(zip(range(0, len(related_pod_index)),related_pod_index)) pod_dict = pd.DataFrame({'rank':pod_dict.keys()},index=pod_dict.values()) related_podcasts_df = pd.DataFrame.join(pod_dict, df, how='inner') final_df = related_podcasts_df.sort_values('rank')[0:number_of_similarities+1][['rank','episode','series']] return final_df def get_related_podcasts_query_scikit(query, number_of_similarities): query = query.lower() query = query.split() tfidf_matrix_test = tf.fit_transform(query) tfidf_matrix_train = tf.transform(df['transcribed']) tfidf_matrix_train.todense() tfidf_matrix_test.todense() query_similarities = linear_kernel(tfidf_matrix_test, tfidf_matrix_train) query_similarities = query_similarities.argsort()[0][::-1] pod_dict = dict(zip(range(0, len(query_similarities)),query_similarities)) pod_dict = pd.DataFrame({'rank':pod_dict.keys()},index=pod_dict.values()) related_podcasts_df = pd.DataFrame.join(pod_dict, df, how='inner') final_df = related_podcasts_df.sort_values('rank')[0:number_of_similarities+1][['rank','episode','series']] return final_df get_related_podcasts_query_scikit('trump clinton obama guns',5) get_related_podcasts_scikit(22,5) %timeit get_related_podcasts_query_scikit('economics math statistics',5) %timeit get_related_podcasts_scikit(22,5) import gensim os.chdir('/Users/sheldon/git/springboard_capstone/apps/') dictionary = gensim.corpora.Dictionary.load('models/words.dict') corpus = gensim.corpora.MmCorpus('models/corpus.mm') tfidf = gensim.models.tfidfmodel.TfidfModel.load('models/tfidf_model') lsi = gensim.models.lsimodel.LsiModel.load('models/model.lsi') index = gensim.similarities.MatrixSimilarity.load('models/corpus.index') corpus_tfidf = tfidf[corpus] corpus_lsi = lsi[corpus_tfidf] lsi.print_topics(10) def get_related_podcasts(index): def getKey(item): return item[1] corpus = corpus_lsi[index] corpus = sorted(corpus, key=getKey, reverse=True)[0:10] related_df = pd.DataFrame(corpus,columns=['index','score']) final_df = pd.merge(related_df, df, on='index')[['index','episode','score','series']] return final_df def get_related_podcasts_query(query): query = query.lower() vec_box = dictionary.doc2bow(query.split()) vec_lsi = lsi[vec_box] sims = index[vec_lsi] sims = sorted(enumerate(sims), key=lambda item: -item[1])[0:10] related_df = pd.DataFrame(sims,columns=['index','score']) final_df = pd.merge(related_df, df, on='index')[['index','episode','score','series']] return final_df get_related_podcasts(1) get_related_podcasts_query("trump clinton obama guns") %timeit get_related_podcasts(1) %timeit get_related_podcasts_query('economics math statistics') #get list of related podcasts related_podcasts = list(get_related_podcasts(1)['index']) def get_topics_per_podcast(podcast_index): def getKey(item): return item[1] topic_ids = [i for i in sorted(corpus_lsi[podcast_index], key=getKey, reverse=True) if i[1] > 0.10] def get_topic_arrays(topic_ids): x = [] for id in topic_ids: list_of_words = sorted(lsi.show_topic(id[0], topn=5),key=getKey, reverse=True) z = [] for word in list_of_words: if word[1] > .05: z.append(word) x.append(z) return x topic_arrays = get_topic_arrays(topic_ids) return topic_arrays related_podcasts_topics_words = [[related_podcasts[i],get_topics_per_podcast(related_podcasts[i])] for i in range(0, len(related_podcasts))] episode_podcasts = list(get_related_podcasts(1)['episode']) series_podcasts = list(get_related_podcasts(1)['series']) for i,k in enumerate(related_podcasts_topics_words): print "Podcast: {}, ID: {}".format(i+1, k[0]) print "Podcast Series: {}".format(series_podcasts[i]) print "Episode Title: {}".format(episode_podcasts[i]) for num, topic in enumerate(k[1]): print "topic: {}".format(num) for word in topic: print "word: {}, score:{}".format(word[0], word[1]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Note that a similar transformation can be applied with compute_ems
<ASSISTANT_TASK:> Python Code: # Author: Denis Engemann <[email protected]> # Jean-Remi King <[email protected]> # # License: BSD (3-clause) import numpy as np import matplotlib.pyplot as plt import mne from mne import io, EvokedArray from mne.datasets import sample from mne.decoding import EMS, compute_ems from sklearn.model_selection import StratifiedKFold print(__doc__) data_path = sample.data_path() # Preprocess the data raw_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw.fif' event_fname = data_path + '/MEG/sample/sample_audvis_filt-0-40_raw-eve.fif' event_ids = {'AudL': 1, 'VisL': 3} # Read data and create epochs raw = io.read_raw_fif(raw_fname, preload=True) raw.filter(0.5, 45, fir_design='firwin') events = mne.read_events(event_fname) picks = mne.pick_types(raw.info, meg='grad', eeg=False, stim=False, eog=True, exclude='bads') epochs = mne.Epochs(raw, events, event_ids, tmin=-0.2, tmax=0.5, picks=picks, baseline=None, reject=dict(grad=4000e-13, eog=150e-6), preload=True) epochs.drop_bad() epochs.pick_types(meg='grad') # Setup the data to use it a scikit-learn way: X = epochs.get_data() # The MEG data y = epochs.events[:, 2] # The conditions indices n_epochs, n_channels, n_times = X.shape # Initialize EMS transformer ems = EMS() # Initialize the variables of interest X_transform = np.zeros((n_epochs, n_times)) # Data after EMS transformation filters = list() # Spatial filters at each time point # In the original paper, the cross-validation is a leave-one-out. However, # we recommend using a Stratified KFold, because leave-one-out tends # to overfit and cannot be used to estimate the variance of the # prediction within a given fold. for train, test in StratifiedKFold(n_splits=5).split(X, y): # In the original paper, the z-scoring is applied outside the CV. # However, we recommend to apply this preprocessing inside the CV. # Note that such scaling should be done separately for each channels if the # data contains multiple channel types. X_scaled = X / np.std(X[train]) # Fit and store the spatial filters ems.fit(X_scaled[train], y[train]) # Store filters for future plotting filters.append(ems.filters_) # Generate the transformed data X_transform[test] = ems.transform(X_scaled[test]) # Average the spatial filters across folds filters = np.mean(filters, axis=0) # Plot individual trials plt.figure() plt.title('single trial surrogates') plt.imshow(X_transform[y.argsort()], origin='lower', aspect='auto', extent=[epochs.times[0], epochs.times[-1], 1, len(X_transform)], cmap='RdBu_r') plt.xlabel('Time (ms)') plt.ylabel('Trials (reordered by condition)') # Plot average response plt.figure() plt.title('Average EMS signal') mappings = [(key, value) for key, value in event_ids.items()] for key, value in mappings: ems_ave = X_transform[y == value] plt.plot(epochs.times, ems_ave.mean(0), label=key) plt.xlabel('Time (ms)') plt.ylabel('a.u.') plt.legend(loc='best') plt.show() # Visualize spatial filters across time evoked = EvokedArray(filters, epochs.info, tmin=epochs.tmin) evoked.plot_topomap(time_unit='s', scalings=1) epochs.equalize_event_counts(event_ids) X_transform, filters, classes = compute_ems(epochs) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the Data Step2: Create the Model Step3: Training the Model Step4: Store the Model
<ASSISTANT_TASK:> Python Code: # グラフが文章中に表示されるようにするおまじない %matplotlib inline # autoreload module %load_ext autoreload %autoreload 2 # load local package import sys import os current_path = os.getcwd() sys.path.append(os.path.join(current_path, "../../")) # load project root def read_data(path, ignore_columns): import os import numpy as np header = [] y = None X = None # read data part with open(data_file, "rb") as f: header = f.readline().decode("utf-8").replace("\r", "").replace("\n", "").split("\t") columns = [c for c in range(len(header)) if c not in ignore_columns] header = [h for i, h in enumerate(header) if i not in [0] + ignore_columns] data = np.genfromtxt(f, invalid_raise=False, usecols=columns) y = data[:, 0] X = data[:, 1:] return header, y, X data_file = os.path.join(current_path, "../../data/photo_to_mood.txt") header, moods, labels = read_data(data_file, [1]) print(header) print(moods.shape) print(labels.shape) def select_features(feature_count, X, y, header): from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif selector = SelectKBest(f_classif, k=feature_count).fit(X, y) selected = selector.get_support() get_headers = lambda s: [i_h[1] for i_h in enumerate(header) if s[i_h[0]]] kbests = sorted(zip(get_headers(selected), selector.scores_[selected]), key=lambda h_s: h_s[1], reverse=True) return kbests scores = select_features(10, labels, moods, header) selected_features = [header.index(s[0]) for s in scores] print(scores) print(selected_features) def create_model(X, y, selected=()): from sklearn.cross_validation import train_test_split from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn import svm X_c = X if len(selected) == 0 else X[:, selected] x_train, x_test, y_train, y_test = train_test_split(X_c, y, test_size=0.2, random_state=42) candidates = [{'kernel': ['linear'], 'C': [1, 10, 100]}] clf = GridSearchCV(svm.SVC(C=1), candidates, cv=2, scoring="f1_weighted") clf.fit(x_train, y_train) for params, mean_score, scores in sorted(clf.grid_scores_, key=lambda s: s[1], reverse=True): print("%0.3f (+/-%0.03f) for %r" % (mean_score, scores.std() / 2, params)) model = clf.best_estimator_ y_predict = model.predict(x_test) print(classification_report(y_test, y_predict)) return model model = create_model(labels, moods, selected_features) print(model) def save(model): from sklearn.externals import joblib joblib.dump(model, "./machine.pkl") print([header[s] for s in sorted(selected_features)]) save(model) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1 Introduction Step2: Ou importer le module matplotlib.pyplot avec l'identifiant plt. Plus correct pour éviter de charger tous les objets Step3: 1.2 MATLAB-like API Step4: Example élémentaire d'utilisation de l'API. Step5: La plupart des fonctions MATLAB sont incluses dans pylab. Step6: Cette API est limitée à des graphes rudimentaires. Les fonctionalités orientées objet de Matplotlib sont à privilégier pour des graphes plus élaborées. Step7: Although a little bit more code is involved, the advantage is that we now have full control of where the plot axes are placed, and we can easily add more than one axis to the figure Step8: If we don't care about being explicit about where our plot axes are placed in the figure canvas, then we can use one of the many axis layout managers in matplotlib. My favorite is subplots, which can be used like this Step9: That was easy, but it isn't so pretty with overlapping figure axes and labels, right? Step10: 2.2 Tailles et proportions Step11: The same arguments can also be passed to layout managers, such as the subplots function Step12: 2.3 Sauver les figures Step13: Here we can also optionally specify the DPI and choose between different output formats Step14: What formats are available and which ones should be used for best quality? Step15: Libellés des axes Step16: Légendes Step17: The method described above follows the MATLAB API. It is somewhat prone to errors and unflexible if curves are added to or removed from the figure (resulting in a wrongly labelled curve). Step18: The advantage with this method is that if curves are added or removed from the figure, the legend is automatically updated accordingly. Step19: The following figure shows how to use the figure title, axis labels and legends described above Step20: 2.5 Formattage des textes Step21: We can also change the global font size and font family, which applies to all text elements in a figure (tick labels, axis labels and titles, legends, etc.) Step22: A good choice of global fonts are the STIX fonts Step23: Or, alternatively, we can request that matplotlib uses LaTeX to render the text elements in the figure Step24: 2.6 Couleurs, largeur et types de lignes Step25: We can also define colors by their names or RGB hex codes and optionally provide an alpha value using the color and alpha keyword arguments Step26: Line and marker styles Step27: 2.7 Contrôle des axes Step28: Logarithmic scale Step29: 2.8 Placement des échelles et libellés Step30: There are a number of more advanced methods for controlling major and minor tick placement in matplotlib figures, such as automatic placement according to different policies. See http Step31: 2.9 Formattage des espaces sur les axes Step32: Axis position adjustments Step33: 2.10 Grille Step34: 2.11 Double graphique Step35: 2.12 Axes centrés Step36: 2.13 Autres graphes 2D Step37: 2.14 Textes d'annotation Step38: 2.15 Figures avec sous graphes Step39: subplot2grid Step40: gridspec Step41: add_axes Step42: 2.16 Graphes de contour Step43: pcolor Step44: imshow Step45: contour Step46: 3 graphes 3D Step47: 3.1 Surface plots Step48: Wire-frame plot Step49: 3.2 Coutour plots with projections Step50: Change the view angle
<ASSISTANT_TASK:> Python Code: %matplotlib inline from pylab import * # import matplotlib import matplotlib.pyplot as plt import numpy as np from pylab import * x = np.linspace(0, 5, 10) y = x ** 2 figure() plot(x, y, 'r') xlabel('x') ylabel('y') title('titre') show() subplot(1,2,1) plot(x, y, 'r--') subplot(1,2,2) plot(y, x, 'g*-'); show() fig = plt.figure() axes = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # left, bottom, width, height (range 0 to 1) axes.plot(x, y, 'r') axes.set_xlabel('x') axes.set_ylabel('y') axes.set_title('title'); show() fig = plt.figure() axes1 = fig.add_axes([0.1, 0.1, 0.8, 0.8]) # main axes axes2 = fig.add_axes([0.2, 0.5, 0.4, 0.3]) # inset axes # main figure axes1.plot(x, y, 'r') axes1.set_xlabel('x') axes1.set_ylabel('y') axes1.set_title('title') # insert axes2.plot(y, x, 'g') axes2.set_xlabel('y') axes2.set_ylabel('x') axes2.set_title('insert title'); show; fig, axes = plt.subplots() axes.plot(x, y, 'r') axes.set_xlabel('x') axes.set_ylabel('y') axes.set_title('title'); show() fig, axes = plt.subplots(nrows=1, ncols=2) for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') show() fig, axes = plt.subplots(nrows=1, ncols=2) for ax in axes: ax.plot(x, y, 'r') ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title') fig.tight_layout() show() fig = plt.figure(figsize=(8,4), dpi=100) fig, axes = plt.subplots(figsize=(12,3)) axes.plot(x, y, 'r') axes.set_xlabel('x') axes.set_ylabel('y') axes.set_title('title'); show() fig.savefig("filename.png") fig.savefig("filename.png", dpi=200) ax.set_title("title"); ax.set_xlabel("x") ax.set_ylabel("y"); ax.legend(["curve1", "curve2", "curve3"]); ax.plot(x, x**2, label="curve1") ax.plot(x, x**3, label="curve2") ax.legend(); ax.legend(loc=0) # let matplotlib decide the optimal location ax.legend(loc=1) # upper right corner ax.legend(loc=2) # upper left corner ax.legend(loc=3) # lower left corner ax.legend(loc=4) # lower right corner # .. many more options are available fig, ax = plt.subplots() ax.plot(x, x**2, label="y = x**2") ax.plot(x, x**3, label="y = x**3") ax.legend(loc=2); # upper left corner ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('title'); show() fig, ax = plt.subplots() ax.plot(x, x**2, label=r"$y = \alpha^2$") ax.plot(x, x**3, label=r"$y = \alpha^3$") ax.legend(loc=2) # upper left corner ax.set_xlabel(r'$\alpha$', fontsize=18) ax.set_ylabel(r'$y$', fontsize=18) ax.set_title('title'); show() # Update the matplotlib configuration parameters: matplotlib.rcParams.update({'font.size': 18, 'font.family': 'serif'}) fig, ax = plt.subplots() ax.plot(x, x**2, label=r"$y = \alpha^2$") ax.plot(x, x**3, label=r"$y = \alpha^3$") ax.legend(loc=2) # upper left corner ax.set_xlabel(r'$\alpha$') ax.set_ylabel(r'$y$') ax.set_title('title'); show() # Update the matplotlib configuration parameters: matplotlib.rcParams.update({'font.size': 18, 'font.family': 'STIXGeneral', 'mathtext.fontset': 'stix'}) fig, ax = plt.subplots() ax.plot(x, x**2, label=r"$y = \alpha^2$") ax.plot(x, x**3, label=r"$y = \alpha^3$") ax.legend(loc=2) # upper left corner ax.set_xlabel(r'$\alpha$') ax.set_ylabel(r'$y$') ax.set_title('title'); show() matplotlib.rcParams.update({'font.size': 18, 'text.usetex': True}) fig, ax = plt.subplots() ax.plot(x, x**2, label=r"$y = \alpha^2$") ax.plot(x, x**3, label=r"$y = \alpha^3$") ax.legend(loc=2) # upper left corner ax.set_xlabel(r'$\alpha$') ax.set_ylabel(r'$y$') ax.set_title('title'); show() # restore matplotlib.rcParams.update({'font.size': 12, 'font.family': 'sans', 'text.usetex': False}) # MATLAB style line color and style ax.plot(x, x**2, 'b.-') # blue line with dots ax.plot(x, x**3, 'g--') # green dashed line fig, ax = plt.subplots() ax.plot(x, x+1, color="red", alpha=0.5) # half-transparant red ax.plot(x, x+2, color="#1155dd") # RGB hex code for a bluish color ax.plot(x, x+3, color="#15cc55") # RGB hex code for a greenish color show() fig, ax = plt.subplots(figsize=(12,6)) ax.plot(x, x+1, color="blue", linewidth=0.25) ax.plot(x, x+2, color="blue", linewidth=0.50) ax.plot(x, x+3, color="blue", linewidth=1.00) ax.plot(x, x+4, color="blue", linewidth=2.00) # possible linestype options ‘-‘, ‘--’, ‘-.’, ‘:’, ‘steps’ ax.plot(x, x+5, color="red", lw=2, linestyle='-') ax.plot(x, x+6, color="red", lw=2, ls='-.') ax.plot(x, x+7, color="red", lw=2, ls=':') # custom dash line, = ax.plot(x, x+8, color="black", lw=1.50) line.set_dashes([5, 10, 15, 10]) # format: line length, space length, ... # possible marker symbols: marker = '+', 'o', '*', 's', ',', '.', '1', '2', '3', '4', ... ax.plot(x, x+ 9, color="green", lw=2, ls='--', marker='+') ax.plot(x, x+10, color="green", lw=2, ls='--', marker='o') ax.plot(x, x+11, color="green", lw=2, ls='--', marker='s') ax.plot(x, x+12, color="green", lw=2, ls='--', marker='1') # marker size and color ax.plot(x, x+13, color="purple", lw=1, ls='-', marker='o', markersize=2) ax.plot(x, x+14, color="purple", lw=1, ls='-', marker='o', markersize=4) ax.plot(x, x+15, color="purple", lw=1, ls='-', marker='o', markersize=8, markerfacecolor="red") ax.plot(x, x+16, color="purple", lw=1, ls='-', marker='s', markersize=8, markerfacecolor="yellow", markeredgewidth=2, markeredgecolor="blue"); show() fig, axes = plt.subplots(1, 3, figsize=(12, 4)) axes[0].plot(x, x**2, x, x**3) axes[0].set_title("default axes ranges") axes[1].plot(x, x**2, x, x**3) axes[1].axis('tight') axes[1].set_title("tight axes") axes[2].plot(x, x**2, x, x**3) axes[2].set_ylim([0, 60]) axes[2].set_xlim([2, 5]) axes[2].set_title("custom axes range"); show() fig, axes = plt.subplots(1, 2, figsize=(10,4)) axes[0].plot(x, x**2, x, np.exp(x)) axes[0].set_title("Normal scale") axes[1].plot(x, x**2, x, np.exp(x)) axes[1].set_yscale("log") axes[1].set_title("Logarithmic scale (y)"); show() fig, ax = plt.subplots(figsize=(10, 4)) ax.plot(x, x**2, x, x**3, lw=2) ax.set_xticks([1, 2, 3, 4, 5]) ax.set_xticklabels([r'$\alpha$', r'$\beta$', r'$\gamma$', r'$\delta$', r'$\epsilon$'], fontsize=18) yticks = [0, 50, 100, 150] ax.set_yticks(yticks) ax.set_yticklabels(["$%.1f$" % y for y in yticks], fontsize=18); # use LaTeX formatted labels show() fig, ax = plt.subplots(1, 1) ax.plot(x, x**2, x, np.exp(x)) ax.set_title("scientific notation") ax.set_yticks([0, 50, 100, 150]) from matplotlib import ticker formatter = ticker.ScalarFormatter(useMathText=True) formatter.set_scientific(True) formatter.set_powerlimits((-1,1)) ax.yaxis.set_major_formatter(formatter) show() # distance between x and y axis and the numbers on the axes matplotlib.rcParams['xtick.major.pad'] = 5 matplotlib.rcParams['ytick.major.pad'] = 5 fig, ax = plt.subplots(1, 1) ax.plot(x, x**2, x, np.exp(x)) ax.set_yticks([0, 50, 100, 150]) ax.set_title("label and axis spacing") # padding between axis label and axis numbers ax.xaxis.labelpad = 5 ax.yaxis.labelpad = 5 ax.set_xlabel("x") ax.set_ylabel("y"); show() # restore defaults matplotlib.rcParams['xtick.major.pad'] = 3 matplotlib.rcParams['ytick.major.pad'] = 3 fig, ax = plt.subplots(1, 1) ax.plot(x, x**2, x, np.exp(x)) ax.set_yticks([0, 50, 100, 150]) ax.set_title("title") ax.set_xlabel("x") ax.set_ylabel("y") fig.subplots_adjust(left=0.15, right=.9, bottom=0.1, top=0.9); show() fig, axes = plt.subplots(1, 2, figsize=(10,3)) # default grid appearance axes[0].plot(x, x**2, x, x**3, lw=2) axes[0].grid(True) # custom grid appearance axes[1].plot(x, x**2, x, x**3, lw=2) axes[1].grid(color='b', alpha=0.5, linestyle='dashed', linewidth=0.5) show() fig, ax1 = plt.subplots() ax1.plot(x, x**2, lw=2, color="blue") ax1.set_ylabel(r"area $(m^2)$", fontsize=18, color="blue") for label in ax1.get_yticklabels(): label.set_color("blue") ax2 = ax1.twinx() ax2.plot(x, x**3, lw=2, color="red") ax2.set_ylabel(r"volume $(m^3)$", fontsize=18, color="red") for label in ax2.get_yticklabels(): label.set_color("red") show() fig, ax = plt.subplots() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) # set position of x spine to x=0 ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0)) # set position of y spine to y=0 xx = np.linspace(-0.75, 1., 100) ax.plot(xx, xx**3); show() n = np.array([0,1,2,3,4,5]) fig, axes = plt.subplots(1, 4, figsize=(12,3)) axes[0].scatter(xx, xx + 0.25*np.random.randn(len(xx))) axes[0].set_title("scatter") axes[1].step(n, n**2, lw=2) axes[1].set_title("step") axes[2].bar(n, n**2, align="center", width=0.5, alpha=0.5) axes[2].set_title("bar") axes[3].fill_between(x, x**2, x**3, color="green", alpha=0.5); axes[3].set_title("fill_between"); show() # polar plot using add_axes and polar projection fig = plt.figure() ax = fig.add_axes([0.0, 0.0, .6, .6], polar=True) t = np.linspace(0, 2 * np.pi, 100) ax.plot(t, t, color='blue', lw=3); show() # A histogram n = np.random.randn(100000) fig, axes = plt.subplots(1, 2, figsize=(12,4)) axes[0].hist(n) axes[0].set_title("Default histogram") axes[0].set_xlim((min(n), max(n))) axes[1].hist(n, cumulative=True, bins=50) axes[1].set_title("Cumulative detailed histogram") axes[1].set_xlim((min(n), max(n))); show() fig, ax = plt.subplots() ax.plot(xx, xx**2, xx, xx**3) ax.text(0.15, 0.2, r"$y=x^2$", fontsize=20, color="blue") ax.text(0.65, 0.1, r"$y=x^3$", fontsize=20, color="green"); show() fig, ax = plt.subplots(2, 3) fig.tight_layout() show() fig = plt.figure() ax1 = plt.subplot2grid((3,3), (0,0), colspan=3) ax2 = plt.subplot2grid((3,3), (1,0), colspan=2) ax3 = plt.subplot2grid((3,3), (1,2), rowspan=2) ax4 = plt.subplot2grid((3,3), (2,0)) ax5 = plt.subplot2grid((3,3), (2,1)) fig.tight_layout() show() import matplotlib.gridspec as gridspec fig = plt.figure() gs = gridspec.GridSpec(2, 3, height_ratios=[2,1], width_ratios=[1,2,1]) for g in gs: ax = fig.add_subplot(g) fig.tight_layout() show() fig, ax = plt.subplots() ax.plot(xx, xx**2, xx, xx**3) fig.tight_layout() # inset inset_ax = fig.add_axes([0.2, 0.55, 0.35, 0.35]) # X, Y, width, height inset_ax.plot(xx, xx**2, xx, xx**3) inset_ax.set_title('zoom near origin') # set axis range inset_ax.set_xlim(-.2, .2) inset_ax.set_ylim(-.005, .01) # set axis tick locations inset_ax.set_yticks([0, 0.005, 0.01]) inset_ax.set_xticks([-0.1,0,.1]); show() alpha = 0.7 phi_ext = 2 * np.pi * 0.5 def flux_qubit_potential(phi_m, phi_p): return 2 + alpha - 2 * np.cos(phi_p) * np.cos(phi_m) - alpha * np.cos(phi_ext - 2*phi_p) phi_m = np.linspace(0, 2*np.pi, 100) phi_p = np.linspace(0, 2*np.pi, 100) X,Y = np.meshgrid(phi_p, phi_m) Z = flux_qubit_potential(X, Y).T fig, ax = plt.subplots() p = ax.pcolor(X/(2*np.pi), Y/(2*np.pi), Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max()) cb = fig.colorbar(p, ax=ax) show() fig, ax = plt.subplots() im = ax.imshow(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1]) im.set_interpolation('bilinear') cb = fig.colorbar(im, ax=ax) show() fig, ax = plt.subplots() cnt = ax.contour(Z, cmap=matplotlib.cm.RdBu, vmin=abs(Z).min(), vmax=abs(Z).max(), extent=[0, 1, 0, 1]) show() from mpl_toolkits.mplot3d.axes3d import Axes3D fig = plt.figure(figsize=(14,6)) # `ax` is a 3D-aware axis instance because of the projection='3d' keyword argument to add_subplot ax = fig.add_subplot(1, 2, 1, projection='3d') p = ax.plot_surface(X, Y, Z, rstride=4, cstride=4, linewidth=0) # surface_plot with color grading and color bar ax = fig.add_subplot(1, 2, 2, projection='3d') p = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=matplotlib.cm.coolwarm, linewidth=0, antialiased=False) cb = fig.colorbar(p, shrink=0.5) show() fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(1, 1, 1, projection='3d') p = ax.plot_wireframe(X, Y, Z, rstride=4, cstride=4) show() fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(1,1,1, projection='3d') ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25) cset = ax.contour(X, Y, Z, zdir='z', offset=-np.pi, cmap=matplotlib.cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='x', offset=-np.pi, cmap=matplotlib.cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='y', offset=3*np.pi, cmap=matplotlib.cm.coolwarm) ax.set_xlim3d(-np.pi, 2*np.pi); ax.set_ylim3d(0, 3*np.pi); ax.set_zlim3d(-np.pi, 2*np.pi); show() fig = plt.figure(figsize=(12,6)) ax = fig.add_subplot(1,2,1, projection='3d') ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25) ax.view_init(30, 45) ax = fig.add_subplot(1,2,2, projection='3d') ax.plot_surface(X, Y, Z, rstride=4, cstride=4, alpha=0.25) ax.view_init(70, 30) fig.tight_layout() show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Define an objective function Step2: Let's begin by plotting $f$. Step3: Setting a Gaussian Process prior Step4: The following helper function update_posterior will take care of updating our gpmodel each time we evaluate $f$ at a new value $x$. Step5: Define an acquisition function Step6: The final component we need is a way to find (approximate) minimizing points $x_{\rm min}$ of the acquisition function. There are several ways to proceed, including gradient-based and non-gradient-based techniques. Here we will follow the gradient-based approach. One of the possible drawbacks of gradient descent methods is that the minimization algorithm can get stuck at a local minimum. In this tutorial, we adopt a (very) simple approach to address this issue Step7: The inner loop of Bayesian Optimization Step8: Running the algorithm Step9: Our surrogate model gpmodel already has 4 function evaluations at its disposal; however, we have yet to optimize the GP hyperparameters. So we do that first. Then in a loop we call the next_x and update_posterior functions repeatedly. The following plot illustrates how Gaussian Process posteriors and the corresponding acquisition functions change at each step in the algorith. Note how query points are chosen both for exploration and exploitation.
<ASSISTANT_TASK:> Python Code: import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import torch import torch.autograd as autograd import torch.optim as optim from torch.distributions import constraints, transform_to import pyro import pyro.contrib.gp as gp assert pyro.__version__.startswith('1.7.0') pyro.set_rng_seed(1) def f(x): return (6 * x - 2)**2 * torch.sin(12 * x - 4) x = torch.linspace(0, 1) plt.figure(figsize=(8, 4)) plt.plot(x.numpy(), f(x).numpy()) plt.show() # initialize the model with four input points: 0.0, 0.33, 0.66, 1.0 X = torch.tensor([0.0, 0.33, 0.66, 1.0]) y = f(X) gpmodel = gp.models.GPRegression(X, y, gp.kernels.Matern52(input_dim=1), noise=torch.tensor(0.1), jitter=1.0e-4) def update_posterior(x_new): y = f(x_new) # evaluate f at new point. X = torch.cat([gpmodel.X, x_new]) # incorporate new evaluation y = torch.cat([gpmodel.y, y]) gpmodel.set_data(X, y) # optimize the GP hyperparameters using Adam with lr=0.001 optimizer = torch.optim.Adam(gpmodel.parameters(), lr=0.001) gp.util.train(gpmodel, optimizer) def lower_confidence_bound(x, kappa=2): mu, variance = gpmodel(x, full_cov=False, noiseless=False) sigma = variance.sqrt() return mu - kappa * sigma def find_a_candidate(x_init, lower_bound=0, upper_bound=1): # transform x to an unconstrained domain constraint = constraints.interval(lower_bound, upper_bound) unconstrained_x_init = transform_to(constraint).inv(x_init) unconstrained_x = unconstrained_x_init.clone().detach().requires_grad_(True) minimizer = optim.LBFGS([unconstrained_x], line_search_fn='strong_wolfe') def closure(): minimizer.zero_grad() x = transform_to(constraint)(unconstrained_x) y = lower_confidence_bound(x) autograd.backward(unconstrained_x, autograd.grad(y, unconstrained_x)) return y minimizer.step(closure) # after finding a candidate in the unconstrained domain, # convert it back to original domain. x = transform_to(constraint)(unconstrained_x) return x.detach() def next_x(lower_bound=0, upper_bound=1, num_candidates=5): candidates = [] values = [] x_init = gpmodel.X[-1:] for i in range(num_candidates): x = find_a_candidate(x_init, lower_bound, upper_bound) y = lower_confidence_bound(x) candidates.append(x) values.append(y) x_init = x.new_empty(1).uniform_(lower_bound, upper_bound) argmin = torch.min(torch.cat(values), dim=0)[1].item() return candidates[argmin] def plot(gs, xmin, xlabel=None, with_title=True): xlabel = "xmin" if xlabel is None else "x{}".format(xlabel) Xnew = torch.linspace(-0.1, 1.1) ax1 = plt.subplot(gs[0]) ax1.plot(gpmodel.X.numpy(), gpmodel.y.numpy(), "kx") # plot all observed data with torch.no_grad(): loc, var = gpmodel(Xnew, full_cov=False, noiseless=False) sd = var.sqrt() ax1.plot(Xnew.numpy(), loc.numpy(), "r", lw=2) # plot predictive mean ax1.fill_between(Xnew.numpy(), loc.numpy() - 2*sd.numpy(), loc.numpy() + 2*sd.numpy(), color="C0", alpha=0.3) # plot uncertainty intervals ax1.set_xlim(-0.1, 1.1) ax1.set_title("Find {}".format(xlabel)) if with_title: ax1.set_ylabel("Gaussian Process Regression") ax2 = plt.subplot(gs[1]) with torch.no_grad(): # plot the acquisition function ax2.plot(Xnew.numpy(), lower_confidence_bound(Xnew).numpy()) # plot the new candidate point ax2.plot(xmin.numpy(), lower_confidence_bound(xmin).numpy(), "^", markersize=10, label="{} = {:.5f}".format(xlabel, xmin.item())) ax2.set_xlim(-0.1, 1.1) if with_title: ax2.set_ylabel("Acquisition Function") ax2.legend(loc=1) plt.figure(figsize=(12, 30)) outer_gs = gridspec.GridSpec(5, 2) optimizer = torch.optim.Adam(gpmodel.parameters(), lr=0.001) gp.util.train(gpmodel, optimizer) for i in range(8): xmin = next_x() gs = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec=outer_gs[i]) plot(gs, xmin, xlabel=i+1, with_title=(i % 2 == 0)) update_posterior(xmin) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Ideal Responses Step2: Modeling the Offset Transmission Line Step3: The broadcasting feature in numpy is used here. The quantities Step4: At this point, we already have everything we need to know about this offset line. Step5: Modeling the Shunt Impedance Step6: For the open standard, a series medium.shunt_capacitor() terminated by Step7: Now you can pass these standards into scikit-rf's calibration routines, or use the write_touchstone() method to save them on the disk for future use. Step8: Finally, let's take a look at the magnitudes and phase shifts of our standards. Step9: Short Step10: Conclusion Step11: Example Step12: After unit conversion, we can define standards just like how calibration standards in Keysight-style Step13: Modeling the Shunt Impedance Step14: Completion Step15: Plotting Step16: Short Step17: Thru Step18: Conclusion
<ASSISTANT_TASK:> Python Code: import skrf from skrf.media import DefinedGammaZ0 import numpy as np freq = skrf.Frequency(1, 9000, 1001, "MHz") ideal_medium = DefinedGammaZ0(frequency=freq, z0=50) ideal_open = ideal_medium.open() ideal_short = ideal_medium.short() ideal_load = ideal_medium.match() ideal_thru = ideal_medium.thru() def offset_gamma_and_zc(offset_delay, offset_loss, offset_z0=50): alpha_l = (offset_loss * offset_delay) / (2 * offset_z0) alpha_l *= np.sqrt(freq.f / 1e9) beta_l = 2 * np.pi * freq.f * offset_delay + alpha_l gamma_l = alpha_l + 1j * beta_l zc = (offset_z0) + (1 - 1j) * (offset_loss / (4 * np.pi * freq.f)) * np.sqrt(freq.f / 1e9) return gamma_l, zc gamma_l_open, zc_open = offset_gamma_and_zc(29.242e-12, 2.2e9) gamma_l_short, zc_short = offset_gamma_and_zc(31.785e-12, 2.36e9) medium_open = DefinedGammaZ0( frequency=freq, gamma=gamma_l_open, Z0=zc_open, z0=50 ) line_open = medium_open.line( d=1, unit='m', z0=medium_open.Z0, embed=True ) medium_short = DefinedGammaZ0( frequency=freq, gamma=gamma_l_short, Z0=zc_short, z0=50 ) line_short = medium_short.line( d=1, unit='m', z0=medium_short.Z0, embed=True ) # use ideal_medium, not medium_open and medium_short to avoid confusions. capacitor_poly = np.poly1d([ -0.1597 * 1e-45, 23.17 * 1e-36, -310.1 * 1e-27, 49.43 * 1e-15 ]) capacitor_list = capacitor_poly(freq.f) shunt_open = ideal_medium.capacitor(capacitor_list) ** ideal_medium.short() inductor_poly = np.poly1d([ -0.01 * 1e-42, 2.171 * 1e-33, -108.5 * 1e-24, 2.077 * 1e-12 ]) inductor_list = inductor_poly(freq.f) shunt_short = ideal_medium.inductor(inductor_list) ** ideal_medium.short() open_std = line_open ** shunt_open short_std = line_short ** shunt_short load_std = ideal_medium.match() thru_std = ideal_medium.thru() %matplotlib inline import matplotlib.pyplot as plt mag = plt.subplot(1, 1, 1) plt.title("Keysight 85033E Open (S11)") open_std.plot_s_db(color='red', label="Magnitude") plt.legend(bbox_to_anchor=(0.73, 1), loc='upper left', borderaxespad=0) phase = mag.twinx() open_std.plot_s_deg(color='blue', label="Phase") plt.legend(bbox_to_anchor=(0.73, 0.9), loc='upper left', borderaxespad=0) mag = plt.subplot(1, 1, 1) plt.title("Keysight 85033E Short (S11)") short_std.plot_s_db(color='red', label="Magnitude") plt.legend(bbox_to_anchor=(0.73, 1), loc='upper left', borderaxespad=0) phase = mag.twinx() short_std.plot_s_deg(color='blue', label="Phase") plt.legend(bbox_to_anchor=(0.73, 0.9), loc='upper left', borderaxespad=0) import skrf from skrf.media import DefinedGammaZ0 import numpy as np def keysight_calkit_offset_line(freq, offset_delay, offset_loss, offset_z0): if offset_delay or offset_loss: alpha_l = (offset_loss * offset_delay) / (2 * offset_z0) alpha_l *= np.sqrt(freq.f / 1e9) beta_l = 2 * np.pi * freq.f * offset_delay + alpha_l zc = offset_z0 + (1 - 1j) * (offset_loss / (4 * np.pi * freq.f)) * np.sqrt(freq.f / 1e9) gamma_l = alpha_l + beta_l * 1j medium = DefinedGammaZ0(frequency=freq, z0=offset_z0, Z0=zc, gamma=gamma_l) offset_line = medium.line(d=1, unit='m', z0=medium.Z0, embed=True) return medium, offset_line else: medium = DefinedGammaZ0(frequency=freq, Z0=offset_z0) line = medium.line(d=0) return medium, line def keysight_calkit_open(freq, offset_delay, offset_loss, c0, c1, c2, c3, offset_z0=50): medium, line = keysight_calkit_offset_line(freq, offset_delay, offset_loss, offset_z0) # Capacitance is defined with respect to the port impedance offset_z0, not the lossy # line impedance. In scikit-rf, the return values of `shunt_capacitor()` and `medium.open()` # methods are (correctly) referenced to the port impedance. if c0 or c1 or c2 or c3: poly = np.poly1d([c3, c2, c1, c0]) capacitance = medium.shunt_capacitor(poly(freq.f)) ** medium.open() else: capacitance = medium.open() return line ** capacitance def keysight_calkit_short(freq, offset_delay, offset_loss, l0, l1, l2, l3, offset_z0=50): # Inductance is defined with respect to the port impedance offset_z0, not the lossy # line impedance. In scikit-rf, the return values of `inductor()` and `medium.short()` # methods are (correctly) referenced to the port impedance. medium, line = keysight_calkit_offset_line(freq, offset_delay, offset_loss, offset_z0) if l0 or l1 or l2 or l3: poly = np.poly1d([l3, l2, l1, l0]) inductance = medium.inductor(poly(freq.f)) ** medium.short() else: inductance = medium.short() return line ** inductance def keysight_calkit_load(freq, offset_delay=0, offset_loss=0, offset_z0=50): medium, line = keysight_calkit_offset_line(freq, offset_delay, offset_loss, offset_z0) load = medium.match() return line ** load def keysight_calkit_thru(freq, offset_delay=0, offset_loss=0, offset_z0=50): medium, line = keysight_calkit_offset_line(freq, offset_delay, offset_loss, offset_z0) thru = medium.thru() return line ** thru freq = skrf.Frequency(1, 9000, 1001, "MHz") open_std = keysight_calkit_open( freq, offset_delay=29.242e-12, offset_loss=2.2e9, c0=49.43e-15, c1=-310.1e-27, c2=23.17e-36, c3=-0.1597e-45 ) short_std = keysight_calkit_short( freq, offset_delay=31.785e-12, offset_loss=2.36e9, l0=2.077e-12, l1=-108.5e-24, l2=2.171e-33, l3=-0.01e-42 ) load_std = keysight_calkit_load(freq) thru_std = keysight_calkit_thru(freq) def rs_to_keysight(rs_offset_length, rs_offset_loss, offset_z0=50): offset_delay = rs_offset_length / skrf.constants.c offset_loss = skrf.mathFunctions.db_2_np(rs_offset_loss * offset_z0 / offset_delay) return offset_delay, offset_loss offset_delay, offset_loss = rs_to_keysight(4.344e-3, 0.0033) gamma_l, zc = offset_gamma_and_zc(offset_delay, offset_loss) medium_open = DefinedGammaZ0( frequency=freq, gamma=gamma_l, Z0=zc, z0=50 ) line_open = medium_open.line( d=1, unit='m', z0=medium_open.Z0, embed=True ) offset_delay, offset_loss = rs_to_keysight(5.0017e-3, 0.0038) gamma_l, zc = offset_gamma_and_zc(offset_delay, offset_loss) medium_short = DefinedGammaZ0( frequency=freq, gamma=gamma_l, Z0=zc, z0=50 ) line_short = medium_short.line( d=1, unit='m', z0=medium_short.Z0, embed=True ) offset_delay, offset_loss = rs_to_keysight(17.375e-3, 0.0065) gamma_l, zc = offset_gamma_and_zc(offset_delay, offset_loss) medium_thru = DefinedGammaZ0( frequency=freq, gamma=gamma_l, Z0=zc, z0=50 ) line_thru = medium_thru.line( d=1, unit='m', z0=medium_thru.Z0, embed=True ) capacitor_poly = np.poly1d([ -0.001886 * 1000e-45, 0.1076 * 1000e-36, -1.284 * 1000e-27, 62.54 * 1e-15 ]) capacitor_open = capacitor_poly(freq.f) shunt_open = ideal_medium.shunt_capacitor(capacitor_open) ** ideal_medium.open() # or: shunt_open = ideal_medium.shunt_capacitor(capacitor_open) ** ideal_medium.short() # see the Keysight example for explanation. shunt_short = ideal_medium.short() open_std = line_open ** shunt_open short_std = line_short ** shunt_short load_std = ideal_medium.match() thru_std = line_thru mag = plt.subplot(1, 1, 1) plt.title("Maury Microwave 8050CK10 Open (S11)") open_std.plot_s_db(color='red', label="Magnitude") plt.legend(bbox_to_anchor=(0.73, 1), loc='upper left', borderaxespad=0) phase = mag.twinx() open_std.plot_s_deg(color='blue', label="Phase") plt.legend(bbox_to_anchor=(0.73, 0.9), loc='upper left', borderaxespad=0) mag = plt.subplot(1, 1, 1) plt.title("Maury Microwave 8050CK10 Short (S11)") short_std.plot_s_db(color='red', label="Magnitude") plt.legend(bbox_to_anchor=(0.73, 1), loc='upper left', borderaxespad=0) phase = mag.twinx() short_std.plot_s_deg(color='blue', label="Phase") plt.legend(bbox_to_anchor=(0.73, 0.9), loc='upper left', borderaxespad=0) mag = plt.subplot(1, 1, 1) plt.title("Maury Microwave 8050CK10 Thru (S21)") thru_std.s21.plot_s_db(color='red', label="Magnitude") plt.legend(bbox_to_anchor=(0.73, 1), loc='upper left', borderaxespad=0) phase = mag.twinx() thru_std.s21.plot_s_deg(color='blue', label="Phase") plt.legend(bbox_to_anchor=(0.73, 0.9), loc='upper left', borderaxespad=0) import skrf from skrf.media import DefinedGammaZ0 import numpy as np def rs_to_keysight(rs_offset_length, rs_offset_loss, offset_z0=50): offset_delay = rs_offset_length / skrf.constants.c offset_loss = skrf.mathFunctions.db_2_np(rs_offset_loss * offset_z0 / offset_delay) return offset_delay, offset_loss def rs_calkit_offset_line(freq, rs_offset_length, rs_offset_loss, offset_z0): if rs_offset_length or rs_offset_loss: offset_delay, offset_loss = rs_to_keysight(rs_offset_length, rs_offset_loss) alpha_l = (offset_loss * offset_delay) / (2 * offset_z0) alpha_l *= np.sqrt(freq.f / 1e9) beta_l = 2 * np.pi * freq.f * offset_delay + alpha_l zc = offset_z0 + (1 - 1j) * (offset_loss / (4 * np.pi * freq.f)) * np.sqrt(freq.f / 1e9) gamma_l = alpha_l + beta_l * 1j medium = DefinedGammaZ0(frequency=freq, z0=offset_z0, Z0=zc, gamma=gamma_l) offset_line = medium.line(d=1, unit='m', z0=medium.Z0, embed=True) return medium, offset_line else: medium = DefinedGammaZ0(frequency=freq, Z0=offset_z0) line = medium.line(d=0) return medium, line def rs_calkit_open(freq, offset_length, offset_loss, c0, c1, c2, c3, offset_z0=50): # Capacitance is defined with respect to the port impedance offset_z0, not the lossy # line impedance. In scikit-rf, the return values of `shunt_capacitor()` and `medium.open()` # methods are (correctly) referenced to the port impedance. medium, line = rs_calkit_offset_line(freq, offset_length, offset_loss, offset_z0) if c0 or c1 or c2 or c3: poly = np.poly1d([c3, c2, c1, c0]) capacitance = medium.shunt_capacitor(poly(freq.f)) ** medium.open() else: capacitance = medium.open() return line ** capacitance def rs_calkit_short(freq, offset_length, offset_loss, l0, l1, l2, l3, offset_z0=50): # Inductance is defined with respect to the port impedance offset_z0, not the lossy # line impedance. In scikit-rf, the return values of `inductor()` and `medium.short()` # methods are (correctly) referenced to the port impedance. medium, line = rs_calkit_offset_line(freq, offset_length, offset_loss, offset_z0) if l0 or l1 or l2 or l3: poly = np.poly1d([l3, l2, l1, l0]) inductance = medium.inductor(poly(freq.f)) ** medium.short() else: inductance = medium.short() return line ** inductance def rs_calkit_load(freq, offset_length=0, offset_loss=0, offset_z0=50): medium, line = rs_calkit_offset_line(freq, offset_length, offset_loss, offset_z0) load = medium.match() return line ** load def rs_calkit_thru(freq, offset_length=0, offset_loss=0, offset_z0=50): medium, line = rs_calkit_offset_line(freq, offset_length, offset_loss, offset_z0) thru = medium.thru() return line ** thru freq = skrf.Frequency(1, 9000, 1001, "MHz") open_std = rs_calkit_open( freq, offset_length=4.344e-3, offset_loss=0.0033, # Due to unit differences, the numerical values of c1, c2 and c3 # must be multiplied by 1000 from the R&S datasheet value. For # Anritsu, this is not needed. Check the units on your datasheet! c0=62.54 * 1e-15, c1=-1.284 * 1000e-27, c2=0.1076 * 1000e-36, c3=-0.001886 * 1000e-45 ) short_std = rs_calkit_short( freq, offset_length=5.0017e-3, offset_loss=0.0038, l0=0, l1=0, l2=0, l3=0 ) load_std = rs_calkit_load(freq) thru_std = rs_calkit_thru( freq, offset_length=17.375e-3, offset_loss=0.0065 ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Data Step2: Exercise 1 Step3: Since we find a pvalue for the Levene test of less than our $\alpha$ level (0.05), we can reject the null hypothesis that the variability of the two groups are equal thus implying that the variances are unequal. Step4: Exercise 3 Step5: And the skewness of XLE returns of values > 0 means that there is more weight in the right tail of the distribution. The skewness of XLI returns of value > 0 means that there is more weight in the left tail of the distribution.
<ASSISTANT_TASK:> Python Code: # Useful functions def normal_test(X): z, pval = stats.normaltest(X) if pval < 0.05: print 'Values are not normally distributed.' else: print 'Values are normally distributed.' return # Useful Libraries import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns # Get pricing data for an energy (XLE) and industrial (XLI) ETF xle = get_pricing('XLE', fields = 'price', start_date = '2016-01-01', end_date = '2017-01-01') xli = get_pricing('XLI', fields = 'price', start_date = '2016-01-01', end_date = '2017-01-01') # Compute returns xle_returns = xle.pct_change()[1:] xli_returns = xli.pct_change()[1:] xle = plt.hist(xle_returns, bins=30) xli = plt.hist(xli_returns, bins=30, color='r') plt.xlabel('returns') plt.ylabel('Frequency') plt.title('Histogram of the returns of XLE and XLI') plt.legend(['XLE returns', 'XLI returns']); # Checking for normality using function above. print 'XLE' normal_test(xle_returns) print 'XLI' normal_test(xli_returns) # Because the data is not normally distributed, we must use the levene and not the F-test of variance. stats.levene(xle_returns, xli_returns) # Manually calculating the t-statistic N1 = len(xle_returns) N2 = len(xli_returns) m1 = xle_returns.mean() m2 = xli_returns.mean() s1 = xle_returns.std() s2 = xli_returns.std() test_statistic = (m1 - m2) / (s1**2 / N1 + s2**2 / N2)**0.5 print 't-test statistic:', test_statistic # Alternative form, using the scipy library on python. stats.ttest_ind(xle_returns, xli_returns, equal_var=False) # Calculate the mean and median of xle and xli using the numpy library xle_mean = np.mean(xle_returns) xle_median = np.median(xle_returns) print 'Mean of XLE returns = ', xle_mean, '; median = ', xle_median xli_mean = np.mean(xli_returns) xli_median = np.median(xli_returns) print 'Mean of XLI returns = ', xli_mean, '; median = ', xli_median # Print values of Skewness for xle and xli returns print 'Skew of XLE returns:', stats.skew(xle_returns) print 'Skew of XLI returns:', stats.skew(xli_returns) # Print value of Kurtosis for xle and xli returns print 'kurtosis:', stats.kurtosis(xle_returns) print 'kurtosis:', stats.kurtosis(xli_returns) # Distribution plot of XLE returns in red (for Kurtosis of 1.6). # Distribution plot of XLI returns in blue (for Kurtosis of 2.0). xle = sns.distplot(xle_returns, color = 'r', axlabel = 'xle') xli = sns.distplot(xli_returns, axlabel = 'xli'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Overview <a class="anchor" id="Overview"></a> Step2: However under the enumeration interpretation, the same sample site will return a fully enumerated set of values, based on its distribution's .enumerate_support() method. Step3: Note that we've used "parallel" enumeration to enumerate along a new tensor dimension. This is cheap and allows Pyro to parallelize computation, but requires downstream program structure to avoid branching on the value of z. To support dynamic program structure, you can instead use "sequential" enumeration, which runs the entire model,guide pair once per sample value, but requires running the model multiple times. Step4: Parallel enumeration is cheaper but more complex than sequential enumeration, so we'll focus the rest of this tutorial on the parallel variant. Note that both forms can be interleaved. Step5: Examining discrete latent states <a class="anchor" id="Examining-discrete-latent-states"></a> Step6: Notice that under the hood infer_discrete runs the model twice Step7: When enumering within a plate (as described in the next section) Vindex can also be used together with capturing the plate index via with pyro.plate(...) as i to index into batch dimensions. Here's an example with nontrivial event dimensions due to the Dirichlet distribution. Step8: Plates and enumeration <a class="anchor" id="Plates-and-enumeration"></a> Step9: Observe that during inference the model is run twice, first by the AutoNormal to trace sample sites, and second by elbo to compute loss. In the first run, x has the standard interpretation of one sample per datum, hence shape (10,). In the second run enumeration can use the same three values (3,1) for all data points, and relies on broadcasting for any dependent sample or observe sites that depend on data. For example, in the pyro.sample("obs",...) statement, the distribution has shape (3,1), the data has shape(10,), and the broadcasted log probability tensor has shape (3,10). Step10: We can learn the global parameters using SVI with an autoguide. Step11: Notice that the model was run twice here
<ASSISTANT_TASK:> Python Code: import os import torch import pyro import pyro.distributions as dist from torch.distributions import constraints from pyro import poutine from pyro.infer import SVI, Trace_ELBO, TraceEnum_ELBO, config_enumerate, infer_discrete from pyro.infer.autoguide import AutoNormal from pyro.ops.indexing import Vindex smoke_test = ('CI' in os.environ) assert pyro.__version__.startswith('1.7.0') pyro.set_rng_seed(0) def model(): z = pyro.sample("z", dist.Categorical(torch.ones(5))) print(f"model z = {z}") def guide(): z = pyro.sample("z", dist.Categorical(torch.ones(5))) print(f"guide z = {z}") elbo = Trace_ELBO() elbo.loss(model, guide); elbo = TraceEnum_ELBO(max_plate_nesting=0) elbo.loss(model, config_enumerate(guide, "parallel")); elbo = TraceEnum_ELBO(max_plate_nesting=0) elbo.loss(model, config_enumerate(guide, "sequential")); @config_enumerate def model(): p = pyro.param("p", torch.randn(3, 3).exp(), constraint=constraints.simplex) x = pyro.sample("x", dist.Categorical(p[0])) y = pyro.sample("y", dist.Categorical(p[x])) z = pyro.sample("z", dist.Categorical(p[y])) print(f" model x.shape = {x.shape}") print(f" model y.shape = {y.shape}") print(f" model z.shape = {z.shape}") return x, y, z def guide(): pass pyro.clear_param_store() print("Sampling:") model() print("Enumerated Inference:") elbo = TraceEnum_ELBO(max_plate_nesting=0) elbo.loss(model, guide); serving_model = infer_discrete(model, first_available_dim=-1) x, y, z = serving_model() # takes the same args as model(), here no args print(f"x = {x}") print(f"y = {y}") print(f"z = {z}") @config_enumerate def model(): p = pyro.param("p", torch.randn(5, 4, 3, 2).exp(), constraint=constraints.simplex) x = pyro.sample("x", dist.Categorical(torch.ones(4))) y = pyro.sample("y", dist.Categorical(torch.ones(3))) with pyro.plate("z_plate", 5): p_xy = Vindex(p)[..., x, y, :] z = pyro.sample("z", dist.Categorical(p_xy)) print(f" p.shape = {p.shape}") print(f" x.shape = {x.shape}") print(f" y.shape = {y.shape}") print(f" p_xy.shape = {p_xy.shape}") print(f" z.shape = {z.shape}") return x, y, z def guide(): pass pyro.clear_param_store() print("Sampling:") model() print("Enumerated Inference:") elbo = TraceEnum_ELBO(max_plate_nesting=1) elbo.loss(model, guide); @config_enumerate def model(): data_plate = pyro.plate("data_plate", 6, dim=-1) feature_plate = pyro.plate("feature_plate", 5, dim=-2) component_plate = pyro.plate("component_plate", 4, dim=-1) with feature_plate: with component_plate: p = pyro.sample("p", dist.Dirichlet(torch.ones(3))) with data_plate: c = pyro.sample("c", dist.Categorical(torch.ones(4))) with feature_plate as vdx: # Capture plate index. pc = Vindex(p)[vdx[..., None], c, :] # Reshape it and use in Vindex. x = pyro.sample("x", dist.Categorical(pc), obs=torch.zeros(5, 6, dtype=torch.long)) print(f" p.shape = {p.shape}") print(f" c.shape = {c.shape}") print(f" vdx.shape = {vdx.shape}") print(f" pc.shape = {pc.shape}") print(f" x.shape = {x.shape}") def guide(): feature_plate = pyro.plate("feature_plate", 5, dim=-2) component_plate = pyro.plate("component_plate", 4, dim=-1) with feature_plate, component_plate: pyro.sample("p", dist.Dirichlet(torch.ones(3))) pyro.clear_param_store() print("Sampling:") model() print("Enumerated Inference:") elbo = TraceEnum_ELBO(max_plate_nesting=2) elbo.loss(model, guide); @config_enumerate def model(data, num_components=3): print(f" Running model with {len(data)} data points") p = pyro.sample("p", dist.Dirichlet(0.5 * torch.ones(num_components))) scale = pyro.sample("scale", dist.LogNormal(0, num_components)) with pyro.plate("components", num_components): loc = pyro.sample("loc", dist.Normal(0, 10)) with pyro.plate("data", len(data)): x = pyro.sample("x", dist.Categorical(p)) print(" x.shape = {}".format(x.shape)) pyro.sample("obs", dist.Normal(loc[x], scale), obs=data) print(" dist.Normal(loc[x], scale).batch_shape = {}".format( dist.Normal(loc[x], scale).batch_shape)) guide = AutoNormal(poutine.block(model, hide=["x", "data"])) data = torch.randn(10) pyro.clear_param_store() print("Sampling:") model(data) print("Enumerated Inference:") elbo = TraceEnum_ELBO(max_plate_nesting=1) elbo.loss(model, guide, data); data_dim = 4 num_steps = 10 data = dist.Categorical(torch.ones(num_steps, data_dim)).sample() def hmm_model(data, data_dim, hidden_dim=10): print(f"Running for {len(data)} time steps") # Sample global matrices wrt a Jeffreys prior. with pyro.plate("hidden_state", hidden_dim): transition = pyro.sample("transition", dist.Dirichlet(0.5 * torch.ones(hidden_dim))) emission = pyro.sample("emission", dist.Dirichlet(0.5 * torch.ones(data_dim))) x = 0 # initial state for t, y in enumerate(data): x = pyro.sample(f"x_{t}", dist.Categorical(transition[x]), infer={"enumerate": "parallel"}) pyro.sample(f" y_{t}", dist.Categorical(emission[x]), obs=y) print(f" x_{t}.shape = {x.shape}") hmm_guide = AutoNormal(poutine.block(hmm_model, expose=["transition", "emission"])) pyro.clear_param_store() elbo = TraceEnum_ELBO(max_plate_nesting=1) elbo.loss(hmm_model, hmm_guide, data, data_dim=data_dim); def hmm_model(data, data_dim, hidden_dim=10): with pyro.plate("hidden_state", hidden_dim): transition = pyro.sample("transition", dist.Dirichlet(0.5 * torch.ones(hidden_dim))) emission = pyro.sample("emission", dist.Dirichlet(0.5 * torch.ones(data_dim))) x = 0 # initial state for t, y in pyro.markov(enumerate(data)): x = pyro.sample(f"x_{t}", dist.Categorical(transition[x]), infer={"enumerate": "parallel"}) pyro.sample(f"y_{t}", dist.Categorical(emission[x]), obs=y) print(f"x_{t}.shape = {x.shape}") # We'll reuse the same guide and elbo. elbo.loss(hmm_model, hmm_guide, data, data_dim=data_dim); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create dataframe Step2: Make plot
<ASSISTANT_TASK:> Python Code: %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import numpy as np raw_data = {'first_name': ['Jason', 'Molly', 'Tina', 'Jake', 'Amy'], 'pre_score': [4, 24, 31, 2, 3], 'mid_score': [25, 94, 57, 62, 70], 'post_score': [5, 43, 23, 23, 51]} df = pd.DataFrame(raw_data, columns = ['first_name', 'pre_score', 'mid_score', 'post_score']) df # input data, specifically the second and # third rows, skipping the first column x1 = df.ix[1, 1:] x2 = df.ix[2, 1:] # Create the bar labels bar_labels = ['Pre Score', 'Mid Score', 'Post Score'] # Create a figure fig = plt.figure(figsize=(8,6)) # Set the y position y_pos = np.arange(len(x1)) y_pos = [x for x in y_pos] plt.yticks(y_pos, bar_labels, fontsize=10) # Create a horizontal bar in the position y_pos plt.barh(y_pos, # using x1 data x1, # that is centered align='center', # with alpha 0.4 alpha=0.4, # and color green color='#263F13') # Create a horizontal bar in the position y_pos plt.barh(y_pos, # using NEGATIVE x2 data -x2, # that is centered align='center', # with alpha 0.4 alpha=0.4, # and color green color='#77A61D') # annotation and labels plt.xlabel('Tina\'s Score: Light Green. Molly\'s Score: Dark Green') t = plt.title('Comparison of Molly and Tina\'s Score') plt.ylim([-1,len(x1)+0.1]) plt.xlim([-max(x2)-10, max(x1)+10]) plt.grid() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Train the model Step2: Some crude attempts at sentiment analysis Step3: Proof of principal - ish
<ASSISTANT_TASK:> Python Code: import Load_Text_Set as l_data import run_Word2Vec as w2v words = l_data.text_8(200000) embeddings = w2v.run_embeddings() import numpy as np import regex as re joy_words = ['happy','joy','pleasure','glee'] sad_words = ['sad','unhappy','gloomy'] scary_words = ['scary','frightening','terrifying', 'horrifying'] disgust_words = ['disgust', 'distaste', 'repulsion'] anger_words = ['anger','rage','irritated'] def syn_average(word, list_words = []): to_ret = 0 count = 0 #use this in case a word isnt in dict for syn in list_words: if syn in words.dictionary: syn_id = words.dictionary[syn] to_ret+=np.matmul(embeddings[word].reshape(1,128), embeddings[syn_id].reshape(128,1)) count +=1 else: print(syn," is not in dict") return to_ret/count def test(string_words): happy = words.dictionary['joy'] sad = words.dictionary['fear'] scary = words.dictionary['sad'] disgust = words.dictionary['disgust'] anger = words.dictionary['anger'] d2happy = 0 d2sad = 0 d2scary = 0 d2disgust = 0 d2anger = 0 for a in string_words: if a in words.dictionary: in_dict = words.dictionary[a] d2happy += syn_average(in_dict,joy_words) d2sad += syn_average(in_dict,sad_words) d2scary += syn_average(in_dict,scary_words) d2disgust += syn_average(in_dict,disgust_words) d2anger += syn_average(in_dict,anger_words ) d2happy = d2happy/len(string_words) d2sad = d2sad/len(string_words) d2scary = d2scary/len(string_words) d2disgust = d2disgust/len(string_words) d2anger = d2anger/len(string_words) print( max(d2happy,0),"\t",max(d2sad,0),"\t", max(d2scary,0),"\t", max(d2disgust,0),"\t", max(d2anger,0)) def plot_emotions(top = 8): emotions= [ words.dictionary['joy'], words.dictionary['fear'], words.dictionary['sad'], words.dictionary['disgust'], words.dictionary['anger'] ] for i,i_word in enumerate(emotions): sim = embeddings.similarity(embeddings) nearest = (-sim[i_word, :]).argsort()[1:top+1] print('Nearest to ', emotions[i], ": ") for k in range(top): close_word = words.reverse_dictionary(nearest[k]) print('\t',close_word) happy_string_ = "Even Harry, who knew nothing about the different brooms, thought it looked wonderful. Sleek and shiny, with a mahogany handle, it had a long tail of neat, straight twigs and Nimbus Two Thousand written in gold near the top. As seven o'clock drew nearer, Harry left the castle and set off in the dusk toward the Quidditch field. Held never been inside the stadium before. Hundreds of seats were raised in stands around the field so that the spectators were high enough to see what was going on. At either end of the field were three golden poles with hoops on the end. They reminded Harry of the little plastic sticks Muggle children blew bubbles through, except that they were fifty feet high. Too eager to fly again to wait for Wood, Harry mounted his broomstick and kicked off from the ground. What a feeling -- he swooped in and out of the goal posts and then sped up and down the field. The Nimbus Two Thousand turned wherever he wanted at his lightest touch." scary_string = "and the next second, Harry felt Quirrell's hand close on his wrist. At once, a needle-sharp pain seared across Harry's scar; his head felt as though it was about to split in two; he yelled, struggling with all his might, and to his surprise, Quirrell let go of him. The pain in his head lessened -- he looked around wildly to see where Quirrell had gone, and saw him hunched in pain, looking at his fingers -- they were blistering before his eyes." angry_string = 'He’d forgotten all about the people in cloaks until he passed a group of them next to the baker’s. He eyed them angrily as he passed. He didn’t know why, but they made him uneasy. This bunch were whispering excitedly, too, and he couldn’t see a single collectingtin. It was on his way back past them, clutching a large doughnut in a bag, that he caught a few words of what they were saying.' happy_string_words = re.sub(r"\p{P}+", "", happy_string_).split() scary_string_words = re.sub(r"\p{P}+", "", scary_string).split() angry_string_words = re.sub(r"\p{P}+", "",angry_string).split() print("\n") print("Sentence: ") print(happy_string_) print("Similarity to: ") print("happy \t\t sad \t\t scary \t\t disgust \t\t anger") test(happy_string_words) print("\n") print("Sentence: ") print(scary_string) print("Similarity to: ") print("happy \t\t sad \t\t scary \t\t disgust \t\t anger") test(scary_string_words) print("\n") print("Sentence: ") print(angry_string) print("Similarity to: ") print("happy \t\t sad \t\t scary \t\t disgust \t\t anger") test(angry_string_words) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Comparing the Errors
<ASSISTANT_TASK:> Python Code: def compute_value_dct(theta_lst, features): return [{s: np.dot(theta, x) for s, x in features.items()} for theta in theta_lst] def compute_values(theta_lst, X): return [np.dot(X, theta) for theta in theta_lst] def compute_errors(value_lst, error_func): return [error_func(v) for v in value_lst] def rmse_factory(true_values, d=None): true_values = np.ravel(true_values) # sensible default for weighting distribution if d is None: d = np.ones_like(true_values) else: d = np.ravel(d) assert(len(d) == len(true_values)) # the actual root-mean square error def func(v): diff = true_values - v return np.sqrt(np.mean(d*diff**2)) return func # define the experiment num_states = 8 num_features = 6 num_active = 3 num_runs = 10 max_steps = 10000 # set up environment env = chicken.Chicken(num_states) # Define the target policy pol_pi = policy.FixedPolicy({s: {0: 1} for s in env.states}) # Define the behavior policy pol_mu = policy.FixedPolicy({s: {0: 1} if s < 4 else {0: 0.5, 1: 0.5} for s in env.states}) # state-dependent gamma gm_dct = {s: 0.9 for s in env.states} gm_dct[0] = 0 gm_func = parametric.MapState(gm_dct) gm_p_func = parametric.MapNextState(gm_dct) # set up algorithm parameters update_params = { 'alpha': 0.02, 'beta': 0.002, 'gm': gm_func, 'gm_p': gm_p_func, 'lm': 0.0, 'lm_p': 0.0, 'interest': 1.0, } # Run all available algorithms data = dict() for name, alg in algos.algo_registry.items(): print(name) run_lst = [] for i in range(num_runs): print("Run: %d"%i, end="\r") episode_data = dict() # Want to use random features phi = features.RandomBinary(num_features, num_active) episode_data['features'] = {s: phi(s) for s in env.states} # Set up the agent _update_params = update_params.copy() if name == 'ETD': _update_params['alpha'] = 0.002 agent = OffPolicyAgent(alg(phi.length), pol_pi, pol_mu, phi, _update_params) # Run the experiment episode_data['steps'] = run_contextual(agent, env, max_steps) run_lst.append(episode_data) data[name] = run_lst # True values & associated stationary distribution theta_ls = np.array([ 0.4782969, 0.531441 , 0.59049, 0.6561, 0.729, 0.81, 0.9, 1.]) d_pi = np.ones(num_states)/num_states D_pi = np.diag(d_pi) # define the error/objective function err_func = rmse_factory(theta_ls, d=d_pi) baseline = err_func(np.zeros(num_states)) for name, experiment in data.items(): print(name) errors = [] for episode in experiment: feats = experiment[0]['features'] X = np.array([feats[k] for k in sorted(feats.keys())]) steps = experiment[0]['steps'] thetas = list(pluck('theta', steps)) # compute the values at each step val_lst = compute_values(thetas, X) # compute the errors at each step err_lst = compute_errors(val_lst, err_func) errors.append(err_lst) # calculate the average error clipped_errs = np.clip(errors, 0, 100) avg_err = np.mean(clipped_errs, axis=0) # plot the errors fig, ax = plt.subplots() ax.plot(avg_err) # format the graph ax.set_ylim(1e-2, 2) ax.axhline(baseline, c='red') ax.set_yscale('log') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Let's look at the tables and columns we have for analysis. Step2: Price History Step3: Compare google to S&P Step4: Learning objective 2 Step5: Let's see how the price of stocks change over time on a yearly basis. Using the LAG function we can compute the change in stock price year-over-year. Step6: Compute the year-over-year percentage increase. Step7: Let's visualize some yearly stock Step8: There have been some major fluctations in individual stocks. For example, there were major drops during the early 2000's for tech companies. Step9: Stock splits can also impact our data - causing a stock price to rapidly drop. In practice, we would need to clean all of our stock data to account for this. This would be a major effort! Fortunately, in the case of IBM, for example, all stock splits occurred before the year 2000. Step10: S&P companies list Step11: We can join the price histories table with the S&P 500 table to compare industries Step12: Using pandas we can "unstack" our table so that each industry has it's own column. This will be useful for plotting. Step13: Let's scale each industry using min/max scaling. This will put all of the stocks on the same scale. Currently it can be hard to see the changes in stocks over time across industries. Step14: We can also create a smoothed version of the plot above using a rolling mean. This is a useful transformation to make when visualizing time-series data.
<ASSISTANT_TASK:> Python Code: PROJECT = 'qwiklabs-gcp-ml-489e10787faf' # Change to your project. import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from google.cloud import bigquery from IPython.core.magic import register_cell_magic from IPython import get_ipython bq = bigquery.Client(project=PROJECT) # Allow you to easily have Python variables in SQL query. @register_cell_magic('with_globals') def with_globals(line, cell): contents = cell.format(**globals()) if 'print' in line: print(contents) get_ipython().run_cell(contents) %%with_globals %%bigquery --project {PROJECT} SELECT table_name, column_name, data_type FROM `asl-ml-immersion.stock_src.INFORMATION_SCHEMA.COLUMNS` ORDER BY table_name, ordinal_position def query_stock(symbol): return bq.query(''' SELECT * FROM `asl-ml-immersion.stock_src.price_history` WHERE symbol="{0}" ORDER BY Date '''.format(symbol)).to_dataframe() df_stock = query_stock('GOOG') df_stock.Date = pd.to_datetime(df_stock.Date) ax = df_stock.plot(x='Date', y='Close', title='Google stock') # Add smoothed plot. df_stock['Close_smoothed'] = df_stock.Close.rolling(100, center=True).mean() df_stock.plot(x='Date', y='Close_smoothed', ax=ax); df_sp = query_stock('gspc') def plot_with_sp(symbol): df_stock = query_stock(symbol) df_stock.Date = pd.to_datetime(df_stock.Date) df_stock.Date = pd.to_datetime(df_stock.Date) fig = plt.figure() ax1 = fig.add_subplot(111) ax2 = ax1.twinx() ax = df_sp.plot(x='Date', y='Close', label='S&P', color='green', ax=ax1, alpha=0.7) ax = df_stock.plot(x='Date', y='Close', label=symbol, title=symbol + ' and S&P index', ax=ax2, alpha=0.7) ax1.legend(loc=3) ax2.legend(loc=4) ax1.set_ylabel('S&P price') ax2.set_ylabel(symbol + ' price') ax.set_xlim(pd.to_datetime('2004-08-05'), pd.to_datetime('2013-08-05')) plot_with_sp('GOOG') plot_with_sp('IBM') %%with_globals %%bigquery --project {PROJECT} df WITH with_year AS ( SELECT symbol, EXTRACT(YEAR FROM date) AS year, close FROM `asl-ml-immersion.stock_src.price_history` WHERE symbol in (SELECT symbol FROM `asl-ml-immersion.stock_src.snp500`) ), year_aggregated AS ( SELECT year, symbol, AVG(close) as avg_close FROM with_year WHERE year >= 2000 GROUP BY year, symbol ) SELECT year, symbol, avg_close as close, (LAG(avg_close, 1) OVER (PARTITION BY symbol order by year DESC)) AS next_yr_close FROM year_aggregated ORDER BY symbol, year df.dropna(inplace=True) df['percent_increase'] = (df.next_yr_close - df.close) / df.close def get_random_stocks(n=5): random_stocks = df.symbol.sample(n=n, random_state=3) rand = df.merge(random_stocks) return rand[['year', 'symbol', 'percent_increase']] rand = get_random_stocks() for symbol, _df in rand.groupby('symbol'): plt.figure() sns.barplot(x='year', y="percent_increase", data=_df) plt.title(symbol) df.sort_values('percent_increase').head() stock_symbol = 'YHOO' %%with_globals %%bigquery --project {PROJECT} df SELECT date, close FROM `asl-ml-immersion.stock_src.price_history` WHERE symbol='{stock_symbol}' ORDER BY date ax = df.plot(x='date', y='close') stock_symbol = 'IBM' %%with_globals %%bigquery --project {PROJECT} df SELECT date, close FROM `asl-ml-immersion.stock_src.price_history` WHERE symbol='{stock_symbol}' ORDER BY date IBM_STOCK_SPLIT_DATE = '1979-05-10' ax = df.plot(x='date', y='close') ax.vlines(pd.to_datetime(IBM_STOCK_SPLIT_DATE), 0, 500, linestyle='dashed', color='grey', alpha=0.7); %%with_globals %%bigquery --project {PROJECT} df SELECT * FROM `asl-ml-immersion.stock_src.snp500` df.industry.value_counts().plot(kind='barh'); %%with_globals %%bigquery --project {PROJECT} df WITH sp_prices AS ( SELECT a.*, b.industry FROM `asl-ml-immersion.stock_src.price_history` a JOIN `asl-ml-immersion.stock_src.snp500` b USING (symbol) WHERE date >= "2000-01-01" ) SELECT Date, industry, AVG(close) as close FROM sp_prices GROUP BY Date, industry ORDER BY industry, Date df.head() # Pandas `unstack` to make each industry a column. Useful for plotting. df_ind = df.set_index(['industry', 'Date']).unstack(0).dropna() df_ind.columns = [c[1] for c in df_ind.columns] df_ind.head() ax = df_ind.plot(figsize=(16, 8)) # Move legend down. ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), shadow=True, ncol=2) def min_max_scale(df): return (df - df.min()) / df.max() scaled = min_max_scale(df_ind) ax = scaled.plot(figsize=(16, 8)) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), shadow=True, ncol=2); SMOOTHING_WINDOW = 30 # Days. rolling = scaled.copy() for col in scaled.columns: rolling[col] = scaled[col].rolling(SMOOTHING_WINDOW).mean() ax = rolling.plot(figsize=(16, 8)) ax.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05), shadow=True, ncol=2); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 1. Gnerate x = a sequence of points, y = sin(x)+a where a is a small random error. Step2: 2. Draw a scatter plot of x and y. Step3: 3. Use linear regression model to predict y, with only one feature--x. Please print out the training and validation score of your model and the mathematical formula of your model. Step4: 怎么理解cv_scores是负数? Step5: 5. Try to build a linear model using two features--x and x^2. Please print out the training and validation score score and mathematical formula. Step6: 6. Try to build linear models with features from x to x, x^2, x^3,... x^15, and plot the changes of training score and validation score with the number of features gets larger. Accoding to the result you get, what's the best number of features here?
<ASSISTANT_TASK:> Python Code: %%javascript $.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.js') # import the necessary package at the very beginning import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline import sklearn ## Type Your Answer Below ## np.random.seed(1) X = np.random.random([100, 1]).ravel()*10 # generate a set of 100 random float in range [0, 10] X[:5] random_error = np.random.randn(100) # genrate a set of 100 random error from a standard normal distribution random_error[:5] Y = np.sin(X) + random_error # y = sin(x)+a where a is a small random error Y[:5] ## Type Your Answer Below ## plt.scatter(x=X, y=Y, marker='o', alpha=0.4, color='b') plt.xlabel('X') plt.ylabel('Y') plt.title('Y=sin(X) + random_error') print('X: ', X.shape, ' ', 'Y: ', Y.shape ) ## Type Your Answer Below ## # reshape X from row vector in shape(100, ) to column vector in shape (100, 1) X_re = X.reshape(X.shape[0], 1) X_re.shape # initiate a linear regression model from sklearn.linear_model import LinearRegression lr = LinearRegression() lr # Use train_test_split to train and test lr from sklearn import model_selection Xtrain, Xtest, Ytrain, Ytest = model_selection.train_test_split(X_re, Y, train_size=70, random_state=1) print(Xtrain.shape, Xtest.shape, Ytrain.shape, Ytest.shape) lr.fit(Xtrain, Ytrain) Ypred = lr.predict(Xtest) print('The mathematical formula of linear regression model: ', 'Y = ' + str(lr.coef_) + '*' + 'X + ' + str(lr.intercept_), '\n') print('The coefficient of determination R^2 of the training set: ', lr.score(Xtrain, Ytrain), '\n') print('The coefficient of determination R^2 of the testing set: ', lr.score(Xtest, Ytest), '\n') plt.scatter(Ytest, Ypred, marker='o', alpha=0.5) plt.xlabel('Ytest') plt.ylabel('Ypred') plt.title('Linear regression model performance') # Get the training and validation score of your model # training and validation score具体指的什么? from sklearn.model_selection import cross_val_score cv_scores = cross_val_score(lr, X_re, Y, cv=3) # 3-fold cross validation print('cv_scores: ', cv_scores) print('mean of cv_scores: ', cv_scores.mean()) #The mean score and the 95% confidence interval of the score estimate are hence given by: print("Accuracy: %0.2f (+/- %0.2f)" % (cv_scores.mean(), cv_scores.std() * 2)) ## Type Your Answer Below ## # show predicted y in red color Ypred = lr.predict(X_re) plt.plot(X, Ypred, label='Predicted Y', color='r') # show real y in blue color plt.scatter(X, Y, label='Real Y', color='b') # show ground truth - sin(X) in green color Yground = np.sin(X) plt.scatter(X, Yground, label='Ground truth Y', color='g') plt.xlabel('X') plt.ylabel('Y') plt.title('Three types of Y in a plot') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) ## Type Your Answer Below ## X2 = X_re**2 X2 = np.hstack([X_re, X2]) print(X2.shape) lr2 = LinearRegression() lr2.fit(X2, Y) cv_scores2 = cross_val_score(lr2, X2, Y, cv=3) print('cv_scores for model using x and x^2: ', cv_scores2) print('mean of cv_scores for model using x and x^2: ', cv_scores2.mean()) #The mean score and the 95% confidence interval of the score estimate are hence given by: print("Accuracy: %0.2f (+/- %0.2f)" % (cv_scores2.mean(), cv_scores2.std() * 2)) print('The mathematical formula of linear regression model: ', 'Y = ' + str(lr2.coef_[0]) + '*X ' + str(lr2.coef_[1]) + "*X^2 + " + str(lr.intercept_), '\n') # visualize new set of Ypred, Y, Yground_truth Ypred2 = lr2.predict(X2) Yground = np.sin(X) plt.scatter(X, Ypred2, label='predicted y using x and x**2', color='r') plt.scatter(X, Y, label='real y', color='b') plt.scatter(X, Yground, label='ground truth - sin(x)', color='g') plt.xlabel('X') plt.ylabel('Y') plt.title('Three types of Y in a plot') plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) from sklearn.model_selection import validation_curve from sklearn.linear_model import Ridge from sklearn.model_selection import cross_val_score index =[] # generate an array with number 1 to 15 for i in range(1, 16): index.append(i) df = pd.DataFrame(columns = index) # create a new dataframe with 15 columns df.iloc[:, 0] = X # the 1st column is X**1 mean_cv_scores = [] mean_train_scores = [] mean_valid_scores= [] for i in index: print("################ Adding " + "x**" + str(i) + " ######################") df.loc[:, i] = X**i # Add a new column of values lr = LinearRegression() # start a new linear regression model with the new column taking into consideration #lr.fit(df.iloc[:, :i], Y) #Ypredict = lr.predict(df.iloc[:, :i]) cv_scores = cross_val_score(lr, df.iloc[:, :i], Y, cv=3) print("mean cv score for the model is:", np.mean(cv_scores)) mean_cv_scores.append(np.mean(cv_scores)) train_score, valid_score = validation_curve(Ridge(), df.iloc[:, :i], Y, "alpha", np.logspace(-7, 3, 3)) print("mean train score is: ", np.mean(train_score)) print("mean valid score is: ", np.mean(valid_score)) mean_train_scores.append(np.mean(train_score)) mean_valid_scores.append(np.mean(valid_score)) print() plt.plot(df.columns, mean_train_scores, c='b', label='mean train scores') #plot the training score and validation score showing what happens when feature set gets larger plt.plot(df.columns, mean_valid_scores, c='r', label = 'mean valid scores') plt.xlabel('feature') plt.ylabel('mean of evaluation scores') plt.legend(loc=0) plt.plot(df.columns, mean_cv_scores, label='mean cv scores') #plot the training score and validation score showing what happens when feature set gets larger plt.xlabel('feature') plt.ylabel('mean of cross validation score') plt.legend(loc=0) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new bundle. See Building a System for more details. Step2: Adding Spots Step3: Spot Parameters Step4: The 'colat' parameter defines the latitude on the star measured from its North Pole. The 'long' parameter measures the longitude of the spot - with longitude = 0 being defined as pointing towards the observer at t0. Step5: If we set t0 to 5 instead of zero, then the spot will cross the line-of-sight at t=5 (since the spot's longitude is 0). Step6: And if we change the inclination to 0, we'll be looking at the north pole of the star. This clearly illustrates the right-handed rotation of the star. At time=t0=5 the spot will now be pointing in the negative y-direction.
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.0,<2.1" import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_star() b.add_spot(radius=30, colat=80, long=0, relteff=0.9) print b['spot'] times = np.linspace(0, 10, 11) b.set_value('period', 10) b.add_dataset('mesh', times=times) b.run_compute(distortion_method='rotstar', irrad_method='none') b.animate(x='xs', y='ys', facecolor='teffs') b.set_value('t0', 5) b.run_compute(distortion_method='rotstar', irrad_method='none') b.animate(x='xs', y='ys', facecolor='teffs') b.set_value('incl', 0) b.run_compute(distortion_method='rotstar', irrad_method='none') b.animate(x='xs', y='ys', facecolor='teffs') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now import the version in bruges for comparison Step2: Plot the two together Step3: We can use the inspect module ot compare the source code Step4: Ormsby wavelet Step5: Aki-Richards Step6: Exact Zoeppritz Step7: Bonus Step8: Yet another aside
<ASSISTANT_TASK:> Python Code: def r(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);k=(n.pi*f*t)**2;return t,(1-2*k)/n.exp(k) from bruges.filters import ricker import matplotlib.pyplot as plt t, w = r(0.128, 0.004, 25) plt.figure(figsize=(10,3)) plt.plot(t, ricker(0.128, 0.004, 25), 'o') # Compare to bruges. plt.plot(t, w) plt.xlim(-0.07, 0.07) plt.show() import inspect inspect.getsource(r).strip() len(inspect.getsource(r).strip()) len(inspect.getsource(ricker).strip()) def o(l,d,f):import numpy as n;t=n.arange(-l/2,l/2,d);p=n.pi;f,g,h,i=f;λ=lambda ϕ,t:(n.sinc(ϕ*t)*p*ϕ)**2;A=(λ(i,t)-λ(h,t))/(i-h)-(λ(g,t)-λ(f,t))/(g-f);return t,A/max(A) from bruges.filters import ormsby import matplotlib.pyplot as plt %matplotlib inline t, w = o(0.128, 0.004, [8, 12, 60, 80]) plt.figure(figsize=(10,3)) plt.plot(t, ormsby(0.128, 0.004, [8, 12, 60, 80]), 'o') # Compare to bruges. plt.plot(t, w) plt.xlim(-0.07, 0.07) plt.show() inspect.getsource(o).strip() len(inspect.getsource(o).strip()) len(inspect.getsource(ormsby).strip()) def a(α,β,ρ,χ,ψ,ω,t):import numpy as n;w=ω-ρ;x=ω+ρ;y=ψ+β;p=n.pi*t/180;s=n.sin(p);return w/x-(y/α)**2*w/x*s**2+(χ-α)/(χ+α)/n.cos((p+n.arcsin(χ/α*s))/2)**2-(y/α)**2*(2*(ψ-β)/y)*s**2 from bruges.reflection import akirichards # 4-term Aki-Richards equation in 255 characters! # http://subsurfwiki.org/wiki/Aki–Richards_equation import numpy as np import matplotlib.pyplot as plt %matplotlib inline rock1 = (2300, 1200, 2500) # Vp, Vs, rho for layer 1 rock2 = (2400, 1250, 2450) # Vp, Vs, rho for layer 2 theta1 = np.arange(40) result = a(*rock1, *rock2, theta1) plt.figure(figsize=(10,4)) plt.plot(akirichards(*rock1, *rock2, theta1), 'o') plt.plot(result) plt.show() inspect.getsource(a).strip() len(inspect.getsource(a).strip()) len(inspect.getsource(akirichards).strip()) def z(α,β,ρ,χ,ψ,ω,t):import numpy as n;t=n.pi*t/180;C=n.cos;A=n.arcsin;S=n.sin;p=S(t)/α;u=A(p*χ);ϕ=A(p*β);υ=A(p*ψ);v=lambda w,x,y,z: y-2*y*S(z)**2+2*w*S(x)**2;a=ω-2*ω*S(υ)**2-ρ+2*ρ*S(ϕ)**2;b=v(ρ,ϕ,ω,υ);x=v(ω,υ,ρ,ϕ);d=2*(ω*ψ**2-ρ*β**2);E=b*C(t)/α+x*C(u)/χ;F=b*C(ϕ)/β+x*C(υ)/ψ;G=a-d*C(t)/α*C(υ)/ψ;H=a-d*C(u)/χ*C(ϕ)/β;return(F*(b*C(t)/α-x*C(u)/χ)-H*p**2*(a+d*C(t)/α*C(υ)/ψ))/(E*F+G*H*p**2) from bruges.reflection import zoeppritz_rpp result = z(*rock1, *rock2, np.arange(40)) plt.figure(figsize=(10,4)) plt.plot(zoeppritz_rpp(*rock1, *rock2, theta1), 'o') plt.plot(result) plt.show() inspect.getsource(z).strip() len(inspect.getsource(z).strip()) len(inspect.getsource(zoeppritz_rpp).strip()) def generate_data(bias, length=501): return bias + 10 * np.convolve(np.ones(20), np.random.randn(length) - 0.5, mode='same') vp = generate_data(2600) rhob = generate_data(2800) plt.figure(figsize=(10,3)) plt.plot(vp) plt.plot(rhob) plt.show() def s(v,ρ,l,d,f):import numpy as n;i=v*ρ;t,w=r(l,d,f);return n.convolve(w,n.diff(i)/(i[1:]+i[:-1]),mode='same') t = np.arange(0, 0.5, 0.001) length, dt, freq = (0.1, 0.001, 75) x = s(vp, rhob, length, dt, freq) fig = plt.figure(figsize=(3, 10)) ax = fig.add_subplot(111) ax.plot(x, t, 'k') ax.fill_betweenx(t, x, 0, x>0, color='k') ax.invert_yaxis() ax.set_xticks([]) plt.show() inspect.getsource(s).strip() len(inspect.getsource(s).strip()) def s(v,ρ,l,d,f):import numpy as n;r=lambda l,d,f:(1-2*(n.pi*f*n.arange(-l/2,l/2,d))**2)/n.exp((n.pi*f*n.arange(-l/2,l/2,d))**2);i=v*ρ;return n.convolve(r(.1,.001,75),n.diff(i)/(i[1:]+i[:-1]),mode='same') fig = plt.figure(figsize=(3, 10)) ax = fig.add_subplot(111) ax.plot(x, t, 'k') ax.fill_betweenx(t, x, 0, x>0, color='k') ax.invert_yaxis() ax.set_xticks([]) plt.show() inspect.getsource(s).strip() len(inspect.getsource(s).strip()) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Multiplying Numpy Arrays Step2: LAB CHALLENGE
<ASSISTANT_TASK:> Python Code: import numpy as np one_dimensional = np.array([1,1,1,2,3,3,3,3,3]) one_dimensional one_dimensional.shape # not yet rows & columns one_dimensional.reshape((9,-1)) # let numpy figure out how many columns one_dimensional # still the same one_dimensional.ndim two_dimensional = one_dimensional.reshape(1,9) # recycle same name two_dimensional.shape # is now 2D even if just the one row two_dimensional.ndim class M: Symbolic representation of multiply, add def __init__(self, s): self.s = str(s) def __mul__(self, other): return M(self.s + " * " + other.s) # string def __add__(self, other): return M(self.s + " + " + other.s) def __repr__(self): return self.s #Demo one = M(1) two = M(2) print(one * two) A,B,C = map(M, ['A','B','C']) # create three M type objects m_array = np.array([A,B,C]) # put them in a numpy array m_array.dtype # infers type (Object) m_array = m_array.reshape((-1, len(m_array))) # make this 2 dimensional m_array.shape # transpose works for > 1 dimension m_array.T # stand it up (3,1) vs (1,3) shape m_array.dot(m_array.T) # row dot column i.e. self * self.T m_array.T[1,0] = M('Z') # transpose is not a copy m_array # original has changes m_array * m_array # dot versus element-wise from pandas import Series A = Series(np.arange(10)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you did not already have the training set, download and unpack the tarball. Step2: Problem 1b Step3: Problem 1c Step4: Problem 1d Step5: Problem 1e Step6: Problem 1f Step7: Problem 1g Step8: Problem 2) Machine Learning Classification Step9: The provided training set comes with 3 features Step10: Problem 3) Feature Engineering
<ASSISTANT_TASK:> Python Code: def lc_plot(t, m, m_unc, period=0.0): if period == 0.0: fig, ax = plt.subplots() ax.errorbar(t, m, m_unc, fmt='o', color='MediumAquaMarine', mec="0.2",mew=0.5) ax.set_xlabel('HJD (d)') ax.set_ylabel(r'$V_\mathrm{ASAS}\;(\mathrm{mag})$') fig.gca().invert_yaxis() elif period != 0.0: fig = plt.figure() gs = GridSpec.GridSpec(5, 1) ax_full = plt.subplot(gs[:2, :]) ax_full.errorbar(t, m, m_unc, fmt='o', color='MediumAquaMarine', mec="0.2",mew=0.5) ax_full.set_xlabel('HJD (d)') ax_full.set_ylabel(r'$V_\mathrm{ASAS}\;(\mathrm{mag})$') plt.gca().invert_yaxis() ax_phase = plt.subplot(gs[2:, :]) for repeat in [-1, 0, 1]: ax_phase.errorbar(t/period % 1 + repeat, m, m_unc, fmt='o', color='MediumAquaMarine', mec="0.2",mew=0.5) ax_phase.axvline(x=0, ls='--', color='0.8', lw=1, zorder=3) ax_phase.axvline(x=1, ls='--', color='0.8', lw=1, zorder=3) ax_phase.set_xlim(-0.2, 1.2) ax_phase.set_xlabel('Phase') ax_phase.set_ylabel(r'$V_\mathrm{ASAS}\;(\mathrm{mag})$') plt.gca().invert_yaxis() plt.tight_layout() def read_lc(filename): hjd, mag, mag_unc = np.loadtxt(filename, unpack=True) return hjd, mag, mag_unc # Mira example t, m, m_unc = read_lc("./training_lcs/181637+0341.6") lc_plot(t, m, m_unc, period=150.461188) # RRL example t, m, m_unc = read_lc("./training_lcs/011815-3912.8") lc_plot(t, m, m_unc, period=0.510918) # dEB example t, m, m_unc = read_lc("./training_lcs/153835-6727.8") lc_plot(t, m, m_unc, period=2*1.107174) # aEB example t, m, m_unc = read_lc("./training_lcs/141748-5311.2") lc_plot(t, m, m_unc, period=1.514158) # WU example t, m, m_unc = read_lc("./training_lcs/193546-1136.3") lc_plot(t, m, m_unc, period=0.424015) # Cepheid example t, m, m_unc = read_lc("./training_lcs/065640+0011.4") lc_plot(t, m, m_unc, period=4.022837) # R Cor Bor example t, m, m_unc = read_lc("./training_lcs/163242-5315.6") lc_plot(t, m, m_unc, period=0.0) train_df = pd.read_csv("training_sources.csv") X_train = np.array(train_df[["mean", "nobs", "duration"]]) y_train = np.array(train_df["Class"]) def calc_cv_score(X, y): rf_clf = RandomForestClassifier(n_estimators=150, min_samples_leaf=1) cv_score = cross_val_score(rf_clf, X, y, cv=10, n_jobs=-1) print("These features have CV accuracy = {:.4f} +/- {:.4f}".format(np.mean(cv_score), np.std(cv_score, ddof=1))) calc_cv_score( # complete def calc_feature(df, train=True): if train==True: lc_dir = "./training_lcs/" else: lc_dir = "./test_lcs/" feature = np.empty(len(df)) for source_num, asas_id in enumerate(df["ASAS_ID"]): t, m, mu = read_lc(lc_dir+asas_id) # feature calculations # feature calculations # feature calculations feature[source_num] = feat_val return feature <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download & Process Security Dataset Step2: Analytic I Step3: Analytic II
<ASSISTANT_TASK:> Python Code: from openhunt.mordorutils import * spark = get_spark() sd_file = "https://raw.githubusercontent.com/OTRF/Security-Datasets/master/datasets/atomic/windows/defense_evasion/host/empire_powerview_ldap_ntsecuritydescriptor.zip" registerMordorSQLTable(spark, sd_file, "sdTable") df = spark.sql( ''' SELECT `@timestamp`, Hostname, SubjectUserName, ObjectName, OperationType FROM sdTable WHERE LOWER(Channel) = "security" AND EventID = 4662 AND ObjectServer = "DS" AND AccessMask = "0x40000" AND ObjectType LIKE "%19195a5b_6da0_11d0_afd3_00c04fd930c9%" ''' ) df.show(10,False) df = spark.sql( ''' SELECT `@timestamp`, Hostname, SubjectUserName, ObjectDN, AttributeLDAPDisplayName FROM sdTable WHERE LOWER(Channel) = "security" AND EventID = 5136 AND lower(AttributeLDAPDisplayName) = "ntsecuritydescriptor" AND (AttributeValue LIKE "%1131f6aa_9c07_11d1_f79f_00c04fc2dcd2%" OR AttributeValue LIKE "%1131f6ad_9c07_11d1_f79f_00c04fc2dcd2%" OR AttributeValue LIKE "%89e95b76_444d_4c62_991a_0facbeda640c%") ''' ) df.show(10,False) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Input data Step2: Create a plot function for a visual comparison of the time series Step3: Plot an example series - in this case the temperature Step4: Tune a hierarchical aggregation with segments in combination with duration representation Step5: And determine the pareto optimal aggregation up to 200 total time steps. This may take some time... Step6: And show the results for the last aggregation
<ASSISTANT_TASK:> Python Code: %load_ext autoreload %autoreload 2 import copy import os import pandas as pd import matplotlib.pyplot as plt import tsam.timeseriesaggregation as tsam import tsam.hyperparametertuning as tune import tqdm %matplotlib inline raw = pd.read_csv('testdata.csv', index_col = 0) raw=raw.rename(columns={'T': 'Temperature [°C]', 'Load':'Load [kW]', 'Wind':'Wind [m/s]', 'GHI': 'Solar [W/m²]'}) raw.drop(columns=['Wind [m/s]',], inplace=True) def plotTS(plot_data, raw_data, periodlength=24): fig, axes = plt.subplots(figsize = [7, 6], dpi = 100, nrows = raw_data.shape[1], ncols = 1) for i, column in enumerate(raw.columns): data = plot_data[column] stacked, timeindex = tsam.unstackToPeriods(copy.deepcopy(data), periodlength) cax = axes[i].imshow(stacked.values.T, interpolation = 'nearest', vmin = raw_data[column].min(), vmax = raw_data[column].max(), origin='lower') axes[i].set_aspect('auto') axes[i].set_ylabel('Hour') plt.xlabel('Day in the year') cbar=plt.colorbar(cax, ax=axes[i], pad=0.01, aspect=7) cbar.set_label(column) fig.subplots_adjust(right = 1.1, hspace = 0.05) plotTS(raw,raw,periodlength=24) tunedAggregations = tune.HyperTunedAggregations( tsam.TimeSeriesAggregation( raw, hoursPerPeriod=24, clusterMethod="hierarchical", representationMethod="durationRepresentation", distributionPeriodWise=False, rescaleClusterPeriods=False, segmentation=True, ) ) tunedAggregations.identifyParetoOptimalAggregation(untilTotalTimeSteps=100) predictedPeriods = tunedAggregations.aggregationHistory[-1].predictOriginalData() plotTS(predictedPeriods,raw,periodlength=24) tunedAggregations._segmentHistory[-1] tunedAggregations._periodHistory[-1] aggregation=tsam.TimeSeriesAggregation( raw, hoursPerPeriod=24, noSegments=8, noTypicalPeriods=14, clusterMethod="hierarchical", rescaleClusterPeriods=False, segmentation=True, representationMethod="distributionAndMinMaxRepresentation", distributionPeriodWise=False ) plotTS(aggregation.predictOriginalData(), raw,periodlength=24) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Verify that models.OneParameterLogisticModel can recover parameters. We would only expect this to be possible when USING_2PL = False. Step2: Verify that models.TwoParameterLogisticModel can recover parameters. We would only expect this to be possible when USING_2PL = True. Step3: Verify that models.MIRTModel can recover parameters Step4: Verify that all models achieve similar training AUCs Step5: Construct a synthetic embedding Step6: Sample interactions from the synthetic embedding Step7: Estimate an embedding from the sampled interactions Step12: Visualize the estimated embedding vs. the true embedding
<ASSISTANT_TASK:> Python Code: num_students = 2000 num_assessments = 3000 num_ixns_per_student = 1000 USING_2PL = False # False => using 1PL proficiencies = np.random.normal(0, 1, num_students) difficulties = np.random.normal(0, 1, num_assessments) if USING_2PL: discriminabilities = np.random.normal(0, 1, num_assessments) else: discriminabilities = np.ones(num_assessments) student_ids = ['S'+str(x) for x in xrange(num_students)] assessment_ids = ['A'+str(x) for x in xrange(num_assessments)] ixns = [None] * (num_students * num_ixns_per_student) assessment_idxes = range(num_assessments) for student_idx, student_id in enumerate(student_ids): for t in xrange(num_ixns_per_student): module_idx = random.choice(assessment_idxes) pass_likelihood = 1 / (1 + math.exp(-(discriminabilities[module_idx]*proficiencies[student_idx] + difficulties[module_idx]))) ixns[student_idx * num_ixns_per_student + t] = { 'student_id' : student_id, 'module_id' : assessment_ids[module_idx], 'module_type' : datatools.AssessmentInteraction.MODULETYPE, 'outcome' : np.random.random() < pass_likelihood, 'timestep' : t+1 } history = datatools.InteractionHistory(pd.DataFrame(ixns)) history.idx_of_student_id = lambda x: int(x[1:]) history.idx_of_assessment_id = lambda x: int(x[1:]) mirt_model = models.MIRTModel(history, dims=1, using_assessment_factors=USING_2PL) estimator = est.MIRTMAPEstimator( regularization_constant=1e-3, ftol=1e-5, debug_mode_on=True) mirt_model.fit(estimator) onepl_model = models.OneParameterLogisticModel( history.data, select_regularization_constant=True) onepl_model.fit() twopl_model = models.TwoParameterLogisticModel( history.data, select_regularization_constant=True) twopl_model.fit() student_idxes = [int(k[1:]) for k in history.data['student_id'].unique()] assessment_idxes = [int(k[1:]) for k in history.data['module_id'].unique()] plt.xlabel('True difficulties') plt.ylabel('Estimated difficulties') plt.scatter(difficulties[assessment_idxes], onepl_model.model.coef_[0, num_students:]) plt.show() plt.xlabel('Estimated difficulty - true difficulty') plt.ylabel('Frequency (number of assessments)') plt.hist(onepl_model.model.coef_[0, num_students:] - difficulties[assessment_idxes], bins=20) plt.show() plt.xlabel('True proficiencies') plt.ylabel('Estimated proficiencies') plt.scatter(proficiencies[student_idxes], onepl_model.model.coef_[0, :num_students]) plt.show() plt.xlabel('Estimated proficiency - true proficiency') plt.ylabel('Frequency (number of students)') plt.hist(onepl_model.model.coef_[0, :num_students] - proficiencies[student_idxes], bins=20) plt.show() plt.xlabel('True difficulties') plt.ylabel('Estimated difficulties') plt.scatter(difficulties[assessment_idxes], twopl_model.model.coef_[0, (num_students*num_assessments):]) plt.show() plt.xlabel('Estimated difficulty - true difficulty') plt.ylabel('Frequency (number of assessments)') plt.hist(twopl_model.model.coef_[0, (num_students*num_assessments):] - difficulties[assessment_idxes], bins=20) plt.show() est_params = twopl_model.model.coef_[0, :(num_students*num_assessments)] true_params = discriminabilities[:, None].dot(proficiencies[:, None].T).ravel() plt.xlabel('True proficiency*discriminability') plt.ylabel('Estimated proficiency*discriminability') plt.scatter(true_params, est_params) plt.show() plt.xlabel('Estimated proficiency*discriminability - true proficiency*discriminability') plt.ylabel('Frequency (number of student-assessment pairs)') plt.hist(est_params - true_params, bins=20) plt.show() plt.xlabel('True difficulties') plt.ylabel('Estimated difficulties') plt.scatter(difficulties, mirt_model.assessment_offsets) plt.show() plt.xlabel('Estimated difficulty - true difficulty') plt.ylabel('Frequency (number of assessments)') plt.hist(mirt_model.assessment_offsets - difficulties, bins=20) plt.show() plt.xlabel('True proficiencies') plt.ylabel('Estimated proficiencies') plt.scatter(proficiencies, mirt_model.student_factors[:, 0]) plt.show() plt.xlabel('Estimated proficiency - true proficiency') plt.ylabel('Frequency (number of students)') plt.hist(mirt_model.student_factors[:, 0] - proficiencies, bins=20) plt.show() plt.xlabel('True discriminabilities') plt.ylabel('Estimated discriminabilities') plt.scatter(discriminabilities, mirt_model.assessment_factors[:, 0]) plt.show() plt.xlabel('Estimated discriminability - true discriminability') plt.ylabel('Frequency (number of assessments)') plt.hist(mirt_model.assessment_factors[:, 0] - discriminabilities, bins=20) plt.show() # models.OneParameterLogisticModel evaluate.training_auc(onepl_model, history, plot_roc_curve=True) # models.TwoParameterLogisticModel evaluate.training_auc(twopl_model, history, plot_roc_curve=True) # models.MIRTModel evaluate.training_auc(mirt_model, history, plot_roc_curve=True) # true model true_model = copy.deepcopy(mirt_model) true_model.student_factors[:, 0] = proficiencies true_model.assessment_factors[:, 0] = discriminabilities true_model.assessment_offsets = difficulties evaluate.training_auc(true_model, history, plot_roc_curve=True) num_students = 10000 num_assessment_interactions_per_step = 100 grid_size = 5 embedding_dimension = 2 num_assessments = grid_size ** 2 num_lessons = 2 * grid_size * (grid_size - 1) num_lesson_interactions_per_student = 2 * (grid_size - 1) + 2 S = np.zeros((num_students, embedding_dimension, num_lesson_interactions_per_student)) A = np.zeros((num_assessments, embedding_dimension)) L = np.zeros((num_lessons, embedding_dimension)) Q = np.zeros((num_lessons, embedding_dimension)) lesson_idx_of_loc = {} assessment_idx_of_loc = {} cell_size = 10 / (grid_size - 1) lesson_count = 0 for i in xrange(grid_size): for j in xrange(grid_size): A[grid_size * i + j, :] = [i, j] assessment_idx_of_loc[(i, j)] = grid_size * i + j if j < grid_size - 1: Q[lesson_count, :] = [i, j] L[lesson_count, :] = [0, 1] lesson_idx_of_loc[(i, j, 0, 1)] = lesson_count lesson_count += 1 if i < grid_size - 1: Q[lesson_count, :] = [i, j] L[lesson_count, :] = [1, 0] lesson_idx_of_loc[(i, j, 1, 0)] = lesson_count lesson_count += 1 A *= cell_size Q *= cell_size L *= cell_size A = np.maximum(1e-3, A) Q = np.maximum(1e-3, Q) lesson_loc_of_idx = {v: k for k, v in lesson_idx_of_loc.iteritems()} assessment_loc_of_idx = {v: k for k, v in assessment_idx_of_loc.iteritems()} id_of_loc = lambda x: '-'.join(str(z) for z in x) data = [] for student_idx in xrange(num_students): student_id = 'S' + str(student_idx) steps = ([(0, 1)] * (grid_size - 1)) + ([(1, 0)] * (grid_size - 1)) random.shuffle(steps) x, y = 0, 0 t = 1 assessment_idx = assessment_idx_of_loc[(0, 0)] assessment_id = id_of_loc(assessment_loc_of_idx[assessment_idx]) pass_likelihood = 1 / (1 + math.exp(-(np.dot(S[student_idx, :, t], A[assessment_idx, :]) / np.linalg.norm(A[assessment_idx, :]) - np.linalg.norm(A[assessment_idx, :])))) outcome = random.random() < pass_likelihood data.append({ 'student_id' : student_id, 'module_id' : assessment_id, 'module_type' : datatools.AssessmentInteraction.MODULETYPE, 'timestep' : t, 'outcome' : outcome}) for i, j in steps: lesson_idx = lesson_idx_of_loc[(x, y, i, j)] lesson_id = id_of_loc(lesson_loc_of_idx[lesson_idx]) data.append({ 'student_id' : student_id, 'module_id' : lesson_id, 'module_type' : datatools.LessonInteraction.MODULETYPE, 'timestep' : t, 'outcome' : None}) x += i y += j # DEBUG S[student_idx, :, t+1] = S[student_idx, :, t] + L[lesson_idx, :]# / (1 + math.exp(-(np.dot(S[student_idx, :, t], Q[lesson_idx, :]) / np.linalg.norm(Q[lesson_idx, :]) - np.linalg.norm(Q[lesson_idx, :])))) t += 1 for _ in xrange(num_assessment_interactions_per_step): assessment_idx = random.randint(0, num_assessments - 1) assessment_id = id_of_loc(assessment_loc_of_idx[assessment_idx]) pass_likelihood = 1 / (1 + math.exp(-(np.dot(S[student_idx, :, t], A[assessment_idx, :]) / np.linalg.norm(A[assessment_idx, :]) - np.linalg.norm(A[assessment_idx, :])))) outcome = random.random() < pass_likelihood # BEGIN DEBUG if assessment_idx_of_loc[(0, 0)] == assessment_idx: outcome = random.random() < 0.1 # END DEBUG data.append({ 'student_id' : student_id, 'module_id' : assessment_id, 'module_type' : datatools.AssessmentInteraction.MODULETYPE, 'timestep' : t, 'outcome' : outcome}) history = datatools.InteractionHistory(pd.DataFrame(data)) assessment_idx_map = {id_of_loc(loc): idx for idx, loc in assessment_loc_of_idx.iteritems()} lesson_idx_map = {id_of_loc(loc): idx for idx, loc in lesson_loc_of_idx.iteritems()} history.compute_idx_maps(assessment_idx=assessment_idx_map, lesson_idx=lesson_idx_map) len(history.data) history_path = os.path.join('data', 'lse_synthetic_history.pkl') with open(history_path, 'wb') as f: pickle.dump(history, f, pickle.HIGHEST_PROTOCOL) model = models.EmbeddingModel( history, embedding_dimension=2, using_lessons=True, using_prereqs=False, using_bias=True, learning_update_variance_constant=0.5) estimator = est.EmbeddingMAPEstimator( regularization_constant=1e-3, using_scipy=True, debug_mode_on=True, ftol=1e-4) model.fit(estimator) model = models.OneParameterLogisticModel(history.data, select_regularization_constant=True) model.fit() evaluate.training_auc(model, history, plot_roc_curve=True) plt.scatter(A[:, 0], A[:, 1]) for assessment_idx in xrange(num_assessments): plt.annotate(id_of_assessment_idx(assessment_idx), (A[assessment_idx, 0], A[assessment_idx, 1])) for i in xrange(grid_size): for j in xrange(grid_size): if j < grid_size - 1: assessment_idxes = [assessment_idx_of_loc[(i, j)], assessment_idx_of_loc[(i, j + 1)]] plt.plot(A[assessment_idxes, 0], A[assessment_idxes, 1], c='black') if i < grid_size - 1: assessment_idxes = [assessment_idx_of_loc[(i, j)], assessment_idx_of_loc[(i + 1, j)]] plt.plot(A[assessment_idxes, 0], A[assessment_idxes, 1], c='black') plt.show() plt.scatter(model.assessment_embeddings[:, 0], model.assessment_embeddings[:, 1]) for assessment_idx in xrange(num_assessments): plt.annotate(id_of_assessment_idx(assessment_idx), (model.assessment_embeddings[assessment_idx, 0], model.assessment_embeddings[assessment_idx, 1])) for i in xrange(grid_size): for j in xrange(grid_size): if j < grid_size - 1: assessment_idxes = [assessment_idx_of_loc[(i, j)], assessment_idx_of_loc[(i, j + 1)]] plt.plot(model.assessment_embeddings[assessment_idxes, 0], model.assessment_embeddings[assessment_idxes, 1], c='black') if i < grid_size - 1: assessment_idxes = [assessment_idx_of_loc[(i, j)], assessment_idx_of_loc[(i + 1, j)]] plt.plot(model.assessment_embeddings[assessment_idxes, 0], model.assessment_embeddings[assessment_idxes, 1], c='black') plt.show() plt.quiver(Q[:, 0], Q[:, 1], L[:, 0], L[:, 1], pivot='tail', color='black') for i in xrange(grid_size): for j in xrange(grid_size): if j < grid_size - 1: lesson_idxes = [lesson_idx_of_loc[(i, j)], lesson_idx_of_loc[(i, j + 1)]] plt.plot(Q[lesson_idxes, 0], Q[lesson_idxes, 1], c='black') if i < grid_size - 1: lesson_idxes = [lesson_idx_of_loc[(i, j)], lesson_idx_of_loc[(i + 1, j)]] plt.plot(Q[lesson_idxes, 0], Q[lesson_idxes, 1], c='black') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.xlim([-1, 11]) plt.ylim([-1, 11]) plt.show() plt.quiver(model.prereq_embeddings[:, 0], model.prereq_embeddings[:, 1], model.lesson_embeddings[:, 0], model.lesson_embeddings[:, 1], pivot='tail', color='black') for i in xrange(grid_size): for j in xrange(grid_size): if j < grid_size - 1: lesson_idxes = [lesson_idx_of_loc[(i, j)], lesson_idx_of_loc[(i, j + 1)]] plt.plot(model.prereq_embeddings[lesson_idxes, 0], model.prereq_embeddings[lesson_idxes, 1], c='black') if i < grid_size - 1: lesson_idxes = [lesson_idx_of_loc[(i, j)], lesson_idx_of_loc[(i + 1, j)]] plt.plot(model.prereq_embeddings[lesson_idxes, 0], model.prereq_embeddings[lesson_idxes, 1], c='black') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.xlim([-1, 11]) plt.ylim([-1, 11]) plt.show() right_lesson_idxes = [lesson_idx_of_loc[(i, j, 1, 0)] for i in xrange(grid_size) for j in xrange(grid_size) if (i, j, 1, 0) in lesson_idx_of_loc] up_lesson_idxes = [lesson_idx_of_loc[(i, j, 0, 1)] for i in xrange(grid_size) for j in xrange(grid_size) if (i, j, 0, 1) in lesson_idx_of_loc] plt.quiver(0, 0, L[right_lesson_idxes, 0], L[right_lesson_idxes, 1], pivot='tail', color='red', alpha=0.25) plt.quiver(0, 0, L[up_lesson_idxes, 0], L[up_lesson_idxes, 1], pivot='tail', color='blue', alpha=0.25) plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.xlim([-1, 11]) plt.ylim([-1, 11]) plt.show() plt.quiver(0, 0, model.lesson_embeddings[right_lesson_idxes, 0], model.lesson_embeddings[right_lesson_idxes, 1], pivot='tail', color='red', alpha=0.25) plt.quiver(0, 0, model.lesson_embeddings[up_lesson_idxes, 0], model.lesson_embeddings[up_lesson_idxes, 1], pivot='tail', color='blue', alpha=0.25) plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.xlim([-1, 11]) plt.ylim([-1, 11]) plt.show() plt.scatter(L[right_lesson_idxes, 0], L[right_lesson_idxes, 1], color='red', label='1-0') plt.scatter(L[up_lesson_idxes, 0], L[up_lesson_idxes, 1], color='blue', label='0-1') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.legend(loc='best') plt.show() plt.scatter(model.lesson_embeddings[right_lesson_idxes, 0], model.lesson_embeddings[right_lesson_idxes, 1], color='red', label='1-0') plt.scatter(model.lesson_embeddings[up_lesson_idxes, 0], model.lesson_embeddings[up_lesson_idxes, 1], color='blue', label='0-1') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.legend(loc='best') plt.show() student_idxes = random.sample(range(num_students), 10) for student_idx in student_idxes: plt.scatter(S[student_idx, 0, :], S[student_idx, 1, :], c='black') for i in xrange(num_lesson_interactions_per_student): plt.plot(S[student_idx, 0, i:(i+2)], S[student_idx, 1, i:(i+2)], c='black') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.title('student_id = %s' % history.id_of_student_idx(student_idx)) plt.show() for student_idx in student_idxes: plt.scatter(model.student_embeddings[student_idx, 0, :], model.student_embeddings[student_idx, 1, :], c='black') for i in xrange(num_lesson_interactions_per_student): plt.plot(model.student_embeddings[student_idx, 0, i:(i+2)], model.student_embeddings[student_idx, 1, i:(i+2)], c='black') plt.xlabel('Skill 1') plt.ylabel('Skill 2') plt.title('student_id = %s' % history.id_of_student_idx(student_idx)) plt.show() for student_idx in student_idxes: for i in xrange(embedding_dimension): plt.plot(S[student_idx, i, :], '-s', label='Skill 1') plt.xlabel('Timestep') plt.ylabel('Skill') plt.title('student_id = %s' % history.id_of_student_idx(student_idx)) plt.legend(loc='best') plt.show() for student_idx in student_idxes: for i in xrange(embedding_dimension): plt.plot(model.student_embeddings[student_idx, i, :], '-s', label='Skill 1') plt.xlabel('Timestep') plt.ylabel('Skill') plt.title('student_id = %s' % history.id_of_student_idx(student_idx)) plt.legend(loc='best') plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Each variable holds data, a gradient, and information about the function that created it. Step2: Compare the above computations to the below graph.. and then the one below that! Step3: Since the derivative of w*x wrt x is w, and vice versa Step4: $ y = 2w + b$, since $x = 2$ Step5: Let's compute, $\displaystyle\frac{\partial}{\partial a}(3a^2 + 2a + 1)$ when $a = 2$ <br>
<ASSISTANT_TASK:> Python Code: x = torch.Tensor(5, 3) print(x) x.zero_() torch.Tensor([[1, 2, 3], # rank 2 tensor [4, 5, 6], [7, 8, 9]]) x.size() x = torch.rand(5, 3) print(x) npy = np.random.rand(5, 3) y = torch.from_numpy(npy) print(y) z = x + y #can we do this addition? x.type(), y.type() z = x + y.float() print(z) torch.add(x, y.float()) x x.add_(1) x x[:2, :2] x * y.float() torch.exp(x) torch.transpose(x, 0, 1) #transposing, indexing, slicing, mathematical operations, linear algebra, random numbers torch.trace(x) x.numpy() torch.cuda.is_available() if torch.cuda.is_available(): x_gpu = x.cuda() print(x_gpu) from torch.autograd import Variable x = torch.rand(5, 3) print(x) x = Variable(torch.rand(5, 3)) print(x) x.data # should be nothing right now assert x.grad_fn is None assert x.grad is None x = Variable(torch.Tensor([2]), requires_grad=True) w = Variable(torch.Tensor([3]), requires_grad=True) b = Variable(torch.Tensor([1]), requires_grad=True) z = x * w y = z + b y y.backward() y, b w.grad, w x.grad, x a = Variable(torch.Tensor([2]), requires_grad=True) y = 3*a*a + 2*a + 1 y.backward() a.grad <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parameterization within SQL queries Step2: This defined a SQL query with a string parameter named endpoint, which can be filled when executing the query. Let's give it some value in a separate cell Step3: In order to reference the variable defined above, Google Cloud Datalab offers the $var syntax, which can be invoked in the magic command Step4: This can also be achieved using the Python API instead of the magic commands (%%bq). This is how we will create and execute a parameterized query using the API
<ASSISTANT_TASK:> Python Code: %%bq query -n logs_query SELECT * FROM `cloud-datalab-samples.httplogs.logs_20140615` %bq sample -q logs_query --count 10 %%bq query SELECT endpoint FROM `cloud-datalab-samples.httplogs.logs_20140615` GROUP BY endpoint %%bq query -n endpoint_stats SELECT * FROM `cloud-datalab-samples.httplogs.logs_20140615` WHERE endpoint = @endpoint LIMIT 10 %%bq execute -q endpoint_stats parameters: - name: endpoint type: STRING value: Interact2 endpoint_val = 'Interact3' %%bq execute -q endpoint_stats parameters: - name: endpoint type: STRING value: $endpoint_val import google.datalab.bigquery as bq endpoint_stats2 = bq.Query(sql=''' SELECT * FROM `cloud-datalab-samples.httplogs.logs_20140615` WHERE endpoint = @endpoint LIMIT 10 ''') endpoint_value = 'Interact3' query_parameters = [ { 'name': 'endpoint', 'parameterType': {'type': 'STRING'}, 'parameterValue': {'value': endpoint_value} } ] job = endpoint_stats2.execute(query_params=query_parameters) job.result() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Estimating the angle of rotation Step2: The function can be applied as follows. Step3: Estimating the angle of rotation and the translation Step4: The following code find the angle of rotation and the translation. Then, the original image is obtained
<ASSISTANT_TASK:> Python Code: import numpy as np import sys,os ia898path = os.path.abspath('../../') if ia898path not in sys.path: sys.path.append(ia898path) import ia898.src as ia %matplotlib inline import matplotlib.image as mpimg #f = ia.normalize(ia.gaussian((151,151), [[75],[75]], [[800,0],[0,800]]), [0,200]).astype(uint8) f = mpimg.imread("../data/astablet.tif") H,W = f.shape f = f[:,H//2:H//2+H] #ia.adshow(ia.isolines(f,10,3), "Image in cartesian coordinates") g = ia.polar(f,(150,200),2*np.pi) ia.adshow(f) ia.adshow(g) #ia.adshow(ia.isolines(g.astype(int),10,3), "Image in polar coordinates") #adshow(g, "Image in polar coordinates") f1 = f f2 = f.T[:,::-1] g2 = ia.polar(f2,(150,200),2*np.pi) ia.adshow(f2) ia.adshow(g2) nb = ia.nbshow(2) nb.nbshow(g) nb.nbshow(g2) nb.nbshow() h = ia.phasecorr(g,g2) print(h.shape) ia.adshow(ia.normalize(h)) i = np.argmax(h) row,col = np.unravel_index(i,h.shape) v = h[row,col] print(np.array(g.shape) - np.array((row,col))) print(v) def rotphasecorr2d(f,h): F = np.fft.fftn(f) H = np.fft.fftn(h) pF = ia.polar(ia.dftview(F),(F.shape[0]/2,360),np.pi) pH = ia.polar(ia.dftview(H),(H.shape[0]/2,360),np.pi) return ia.phasecorr(pF, pH) f = mpimg.imread("../data/cameraman.tif") print(f.dtype) t = np.zeros(np.array(f.shape)+200,dtype=np.uint8) t[100:f.shape[0]+100,100:f.shape[1]+100] = f f = t t1 = np.array([ [1,0,-f.shape[0]/2.], [0,1,-f.shape[1]/2.], [0,0,1]]); t2 = np.array([ [1,0,f.shape[0]/2.], [0,1,f.shape[1]/2.], [0,0,1]]); theta = np.radians(30) r1 = np.array([ [np.cos(theta),-np.sin(theta),0], [np.sin(theta),np.cos(theta),0], [0,0,1]]); T = t2.dot(r1).dot(t1) print(f.dtype) f1 = ia.affine(f,T,0) #f1.shape = f.shape nb.nbshow(f, "f:Original image") nb.nbshow(f1, "f1:Image rotated by 30°") nb.nbshow() nb = ia.nbshow(2) F = np.fft.fftn(f) F1 = np.fft.fftn(f1) FS = ia.dftview(F) F1S = ia.dftview(F1) nb.nbshow(FS,'FS') nb.nbshow(F1S,'F1S') nb.nbshow() pFS = ia.polar(FS,(FS.shape[0]//2,360),np.pi) pF1S = ia.polar(F1S,(F1S.shape[0]//2,360),np.pi) nb.nbshow(ia.normalize(pFS),'polar FS') nb.nbshow(ia.normalize(pF1S),'polar F1S') nb.nbshow() pg = ia.phasecorr(pFS,pF1S) ia.adshow(ia.normalize(pg)) peak = np.unravel_index(np.argmax(pg), pg.shape) # Calculate the angle ang = (float(peak[1])/pg.shape[1])*180 print(ang) import scipy def trphasecorr2d(f,h): rg = ia.rotphasecorr2d(f,h) peak = np.unravel_index(argmax(rg), rg.shape) ang = (float(peak[1])/rg.shape[1])*180 h_rot = scipy.ndimage.interpolation.rotate(h, -ang, reshape=False) g = ia.phasecorr(f,h_rot) return g, rg t3 = np.array([ [1,0,50], [0,1,32], [0,0,1]]); T = np.dot(t3,T) h = ia.affine(f,T,0) h.shape = f.shape ia.adshow(f, "Original image") ia.adshow(h, "Image rotated by 30° and translated by (50,32)") g, rg = trphasecorr2d(f,h) g = ia.normalize(g) rg = ia.normalize(rg) trans_peak = np.unravel_index(argmax(g), g.shape) rot_peak = np.unravel_index(argmax(rg), rg.shape) ang = (float(rot_peak[1])/rg.shape[1])*180 trans = (np.array(h.shape)-np.array(trans_peak)) np.adshow(g, "Translation correlation map - Peak %s, \n corresponds to translation %s"%(str(trans_peak), str(tuple(trans)))) np.adshow(ianormalize(rg), "Rotation correlation map - Peak %s, corresponds to angle %f°"%(str(rot_peak),ang)) t4 = np.array([ [1,0,-trans[0]], [0,1,-trans[1]], [0,0,1]]); theta1 = radians(-ang) r2 = np.array([ [np.cos(theta1),-np.sin(theta1),0], [np.sin(theta1),np.cos(theta1),0], [0,0,1]]); T1 = dot(t4,dot(t2,dot(r2,t1))) f1 = ia.affine(h,T1,0) f1.shape = h.shape ia.adshow(f1, "Sample image rotated and translated by %f° and %s, respectively"%(-ang,tuple(-trans))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we plot the two classes as a scatter plot! Step2: Now we want to classify this synthetic data using the perceptron model which will be trained using this data, and then we will test using the same data (this is called, self classification test). To proceed further we first need to train our perceptron model using the theory above. Step3: Now how do we solve for the parameters. Easy, we apply simple gradient descent on the objective function (the function of the parameters to be estimated, which is to be minimized). So we take the derivative of the equation (2) and we get Step4: We can see that this perceptron model classifies the data very well Step5: Try changing the N and see how the prediction changes! Now we will move on to see how this will help us in neural networks. Also if the system does not work, then try changing the eta and iterations (they may need to be tuned as we are generating different random data each time). Also the lines need not be equal as the same partition can be achieved with different lines Step9: Now lets start with the class definition Step10: Now that concludes our code for a general neural network! Now let us look how it works, first lets take a very simple example. Step11: We see this works pretty well where the perceptron totally fails! Now lets do something more challanging. Step12: Now lets try to apply again the three layer neural network to make the classification and see how the self and cross classification error comes into play. Step13: The plot looks really similar, we compute the classification error by absolute difference between two label maps Step14: Now these is all simulated talk, let us look at some real life applications of neural networks. There are several things where even basic neural networks makes a lot of impact. People use it for image classification, digit recognition, financial data analysis, time series prediction, weather predtion etc. Step15: We will test the self classification, and see how the test performs. The parameters are set after extreme experimentation Step16: This classification does not work well, but in neural networks there are many things which can be introduced which will make this system extremely good (one of them is momentum, read it if interested). This same problem is tackled here and they use additional things to reach their required accuracy . Also maybe this system works for some other parameters who knows Step17: Lets do some stylish plotting
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import scipy as sp import matplotlib.pyplot as plt # now we genrate the data N = 30 x = np.zeros(N, dtype=np.float64) y = np.zeros(N, dtype=np.float64) for k in range(N): x[k], y[k] = [np.random.uniform(-1,1) for i in range(2)] a = np.random.uniform(-1,1) b = np.random.uniform(-1,1) c = np.random.uniform(-1,1) label = np.ones(N) # stores the labels for two classes, 1 for C1 and -1 for C2 xa = [] ya = [] xb = [] yb = [] N1 = 0 N2 = 0 # the random line divides the points into two classes of size N1 and N2 for k in range(N): temp = a*x[k] + b*y[k] + c if temp > 0: xa.append(x[k]) ya.append(y[k]) N1 += 1 else: label[k] = -1 xb.append(x[k]) yb.append(y[k]) N2 += 1 plt.scatter(xa, ya, color = 'b') plt.hold(True) plt.scatter(xb, yb, color = 'r') plt.title('Scatter plot of the data, N = 30') w = np.ones(3, dtype=np.float64) # the weights iter_max = 2000 # maximum number of iterations error = 1000.0 # randomly initilize the classification error it = 0 # variable to store the iteration number eta = 0.001 # the step size (try varying this) classified_labels = np.ones(N) while (error != 0 and it < iter_max): # Update Rules temp_vec = np.zeros(3, dtype=np.float64) temp = np.zeros(3, dtype=np.float64) for i in range(N): if label[i] != classified_labels[i]: temp += eta * np.array([x[i], y[i], 1]) * label[i] w += temp # recompute the classification for i in range(N): temp1 = w[0]*x[i] + w[1]*y[i] + w[2] if temp1 > 0: classified_labels[i] = 1 else: classified_labels[i] = -1 # compute the misclassification error error = 0 for i in range(N): temp1 = w[0]*x[i] + w[1]*y[i] + w[2] if label[i] != classified_labels[i]: error += - label[i] * temp1 w = w / np.linalg.norm(w, ord=2) it +=1 print("Done!") x = np.linspace(-1,1,100) y = -(w[0] * x + w[2]) / w[1] plt.scatter(xa, ya, color = 'b') plt.hold(True) plt.scatter(xb, yb, color = 'r') plt.plot(x,y, color='k') plt.title('Perceptron classified data (the line)') x = np.linspace(-1,1,100) y = -(w[0] * x + w[2]) / w[1] plt.plot(x,y,color='b') x = np.linspace(-1,1,100) y = -(a * x + c) / b plt.hold(True) plt.plot(x,y,color='r') plt.legend(['predicted', 'original']) def tanh(x): return np.tanh(x) def tanh_derv(x): # work the math out return 1.0 - np.tanh(x)**2 class neural_network: def __init__(self, layers): layers: A list containing the number of units in each layer. Should be at least two values (this also includes the input layer) actfn : String to select the type of activation function self.act_fn = tanh # the activation function of the hidden layers self.act_fn_derv = tanh_derv # the derivative of the activation function of the hidden layers self.weights = [] # list of the weights # now we need to initialize these weights # We have to keep in mind that every layer except for the output will have one extra bias unit # we initialize the weights randomly between [-0.5,0.5] for i in range(1,len(layers) - 1): self.weights.append(0.5 * (2 * np.random.random([layers[i-1] + 1, layers[i] + 1]) - 1)) # and for between the last hidden layer and the output layer self.weights.append(0.5 * (2 * np.random.random([layers[i] + 1, layers[i + 1]]) - 1)) # This is the training function def train(self, X, t, eta = 0.05, max_iter = 10000): X: Training data input set X = Nxdi, di= dimension of the input data > 1, N = number of data points t: Training data output set, t = Nxdo , do = dimension of the output data eta : double it is the step size for the stochastic gradient descent max_iter : int Number of iterations of the gradient descent # first we need to add another unit to the input # as the input we have provided does not have a # bias input (which we set as one) X = np.atleast_2d(X) # google this command! it's just for smooth computation of matrices temp = np.ones((X.shape[0], X.shape[1] + 1)) temp[:, 0:X.shape[1]] = X X = temp # Now for the stochastic gradient descent iterations for k in range(max_iter): # choose one of the input randomly (which is what we do in the stochastic gradient descent) i = np.random.randint(X.shape[0]) # First the forward pass to get all the estimates a = [X[i]] # this is the input we will use, it will also store all the activations and inputs # for each hidden + output layer for j in range(len(self.weights)): # get the units and pass them through activation function z = self.act_fn(a[j].dot(self.weights[j])) # append to the activation list a.append(z) # compute the error from the target data err = t[i] - a[-1] # the -1 gives the last element = output of the net # Backward pass to estimate all deltas # first generate a list of delts for each layer deltas = [err * self.act_fn_derv(a[-1])] # this is by combining eq(12) and (14) # we start from the second to last layer and go till the input (backward is the word) for j in range(len(a) - 2, 0, -1): # first apply backpropogation formula (14) bp = self.act_fn_derv(a[j]) * deltas[-1].dot(np.transpose(self.weights[j])) # now append it to deltas deltas.append(bp) # the deltas are in from output to input order so we reverse it deltas.reverse() # compute the gradient and apply the update for j in range(len(self.weights)): # Some precessing for the product computation and robustness, google the command atleast_2d frl = np.atleast_2d(a[j]) bwl = np.atleast_2d(deltas[j]) # Application of equation (11) and (15) self.weights[j] += eta * np.transpose(frl).dot(bwl) # now the prediction step def predict_out(self, x): x: The input data to which we have to give the output # this is a simple forward pass like w did in the training except just the output is needed x = np.array(x) temp = np.ones(x.shape[0] + 1) temp[0:x.shape[0]] = x a = temp for j in range(len(self.weights)): a = self.act_fn(a.dot(self.weights[j])) return a nn = neural_network([2,2,1]) inputs = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) targets = np.array([0, 1, 1, 0]) # now train on this data nn.train(inputs, targets) for i in [[0, 0], [0, 1], [1, 0], [1,1]]: print(i,nn.predict_out(i)) N = 1000 x = np.zeros(N, dtype=np.float64) y = np.zeros(N, dtype=np.float64) for k in range(N): x[k], y[k] = [np.random.uniform(-1,1) for i in range(2)] label = np.ones(N) # stores the labels for two classes, 1 for C1 and -1 for C2 xa = [] ya = [] xb = [] yb = [] N1 = 0 N2 = 0 # lets take the function y = 2x^2 - 1 to divide the points for k in range(N): temp = y[k] - 2*x[k]**2 + 1 if temp > 0: xa.append(x[k]) ya.append(y[k]) N1 += 1 else: label[k] = -1 xb.append(x[k]) yb.append(y[k]) N2 += 1 plt.scatter(xa, ya, color = 'b') plt.hold(True) plt.scatter(xb, yb, color = 'r') plt.title('Scatter plot of the data, N = 500') nn = neural_network([2, 2, 1]) inputs = np.zeros([N, 2]) inputs[:,0] = x inputs[:,1] = y nn.train(inputs, label, eta = 0.05) labelout = np.ones(N) xao = [] yao = [] xbo = [] ybo = [] for i in range(N): out = nn.predict_out(inputs[i,:]) if(out > 0): xao.append(inputs[i,0]) yao.append(inputs[i,1]) else: xbo.append(inputs[i,0]) ybo.append(inputs[i,1]) labelout[i] = -1 plt.scatter(xao, yao, color = 'b') plt.hold(True) plt.scatter(xbo, ybo, color = 'r') plt.title('Scatter plot of output') # Self classification error err = np.sum(np.abs(label - labelout)) err = err / len(label) print('Self Classification Error = ', err) import xlrd book = xlrd.open_workbook('BreastTissue.xls') # this has two sheets in it first one is of description and the second is data (which is what we want) print(book.sheet_names()) sh = book.sheet_by_index(1) # the sheet for data # we see the dimentions print('number of rows', sh.nrows, 'number of coloumns', sh.ncols) # we do not want the 1st row and the first coloumn (SEE THE DATA FILE) # The second coloumn is of the class and the rest are feature points # So we define the input and output X = np.zeros([sh.nrows - 1, sh.ncols - 2]) # input to NN y = np.zeros([sh.nrows - 1 , 6] , dtype=np.float64) # output of NN for training for i in range(1,sh.nrows): temp = np.str(sh.row(i)[1].value) if temp == 'car': y[i-1, 0] = 1 if temp == 'fad': y[i-1, 1] = 1 if temp == 'mas': y[i-1, 2] = 1 if temp == 'gla': y[i-1, 3] = 1 if temp == 'con': y[i-1, 4] = 1 if temp == 'adi': y[i-1, 5] = 1 for j in range(2,sh.ncols): X[i-1,j - 2] = sh.row(i)[j].value # we also have to normalize the data before using it for i in range(9): X[:,i] = 1 - (X[:,i] - np.min(X[:,i])) / (np.max(X[:,i]) - np.min(X[:,i])) nn = neural_network([9, 12, 6]) nn.train(X, y, eta = 0.1, max_iter = 100000) misshits = 0 # First the self classification error for i in range(X.shape[0]): temp = nn.predict_out(X[i,:]) temp[temp != np.max(temp)] = 0 temp[temp > 0] = 1 misshits += np.sum(np.abs(temp - y[i,:])) / 2.0 # think why this would be misshits # print("predicted", temp) # print("actual", y[i,:]) print("Self Classification numer of misshits out of 106", misshits) import sklearn from sklearn.metrics import confusion_matrix # Figure out why our confusion matrix will be of size 6x6 predict_arr = [] actual_arr = [] for i in range(X.shape[0]): temp = nn.predict_out(X[i,:]) temp[temp != np.max(temp)] = 0 temp[temp > 0] = 1 if temp[0] == 1.0: predict_arr.append('car') if temp[1] == 1.0: predict_arr.append('fad') if temp[2] == 1.0: predict_arr.append('mas') if temp[3] == 1.0: predict_arr.append('glu') if temp[4] == 1.0: predict_arr.append('con') if temp[5] == 1.0: predict_arr.append('adi') temp = y[i,:] if temp[0] == 1: actual_arr.append('car') if temp[1] == 1: actual_arr.append('fad') if temp[2] == 1: actual_arr.append('mas') if temp[3] == 1: actual_arr.append('glu') if temp[4] == 1: actual_arr.append('con') if temp[5] == 1: actual_arr.append('adi') conf_mat = confusion_matrix(actual_arr, predict_arr, labels = ['car', 'fad', 'mas', 'glu', 'con', 'adi']) conf_mat conf_arr = conf_mat norm_conf = [] for i in conf_arr: a = 0 tmp_arr = [] a = sum(i, 0) for j in i: tmp_arr.append(float(j)/float(a)) norm_conf.append(tmp_arr) fig = plt.figure() plt.clf() ax = fig.add_subplot(111) ax.set_aspect(1) res = ax.imshow(np.array(norm_conf), cmap=plt.cm.Spectral, interpolation='none') ax.grid('off') width, height = np.array(conf_arr).shape for x in xrange(width): for y in xrange(height): ax.annotate(str(conf_arr[x][y]), xy=(y, x), horizontalalignment='center', verticalalignment='center') cb = fig.colorbar(res) alphabet = ['car', 'fad','mas', 'glu', 'con', 'adi'] plt.xticks(range(width), alphabet[:width]) plt.yticks(range(height), alphabet[:height]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Lorenz system Step4: Write a function solve_lorenz that solves the Lorenz system above for a particular initial condition $[x(0),y(0),z(0)]$. Your function should return a tuple of the solution array and time array. Step6: Write a function plot_lorentz that Step7: Use interact to explore your plot_lorenz function with
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import numpy as np from scipy.integrate import odeint from IPython.html.widgets import interact, fixed def lorentz_derivs(yvec, t, sigma, rho, beta): Compute the the derivatives for the Lorentz system at yvec(t). x,y,z = yvec[0], yvec[1], yvec[2] sol = [0,0,0] sol[0] = sigma*(y-x) sol[1] = x*(rho-z)-y sol[2] = x*y - beta*z return sol np.zeros((2,3)) assert np.allclose(lorentz_derivs((1,1,1),0, 1.0, 1.0, 2.0),[0.0,-1.0,-1.0]) def solve_lorentz(ic, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Solve the Lorenz system for a single initial condition. Parameters ---------- ic : array, list, tuple Initial conditions [x,y,z]. max_time: float The max time to use. Integrate with 250 points per time unit. sigma, rho, beta: float Parameters of the differential equation. Returns ------- soln : np.ndarray The array of the solution. Each row will be the solution vector at that time. t : np.ndarray The array of time points used. t = np.linspace(0,max_time,int(250*max_time)) ans = odeint(lorentz_derivs, ic, t, args=(sigma, rho, beta)) return ans, t solve_lorentz(0,0,0) assert True # leave this to grade solve_lorenz N = 5 colors = plt.cm.hot(np.linspace(0,1,N)) for i in range(N): # To use these colors with plt.plot, pass them as the color argument print(colors[i]) np.random.seed(1) 30 * np.random.random_sample((3,)) - 15 30 * np.random.random_sample((3,)) - 15 def plot_lorentz(N=10, max_time=4.0, sigma=10.0, rho=28.0, beta=8.0/3.0): Plot [x(t),z(t)] for the Lorenz system. Parameters ---------- N : int Number of initial conditions and trajectories to plot. max_time: float Maximum time to use. sigma, rho, beta: float Parameters of the differential equation. np.random.seed(1) colors = plt.cm.hot(np.linspace(0,1,N)) for i in range(N): ic = 30 * np.random.random_sample((3,)) - 15 ans, t = solve_lorentz(ic, max_time, sigma, rho, beta) c = colors[i] plt.plot(ans[0],ans[2],color =c ) plt.xlim(-15,15) plt.ylim(-15,20) plt.xlabel('x(t)') plt.ylabel('z(t)') plt.title('Lorentz System') plot_lorentz() assert True # leave this to grade the plot_lorenz function interact(plot_lorentz,N=(1,50,1), max_time = (1,10,1), sigma = (0.0,50.0), rho=(0.0,50.0), beta =fixed(8/3) ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Client-efficient large-model federated learning via federated_select and sparse aggregation Step2: Each client will federated_select the rows of the model weights for at most this many unique tokens. This upper-bounds the size of the client's local model and the amount of server -> client (federated_select) and client - > server (federated_aggregate) communication performed. Step3: We also define a few constants for various types. For this colab, a token is an integer identifier for a particular word after parsing the dataset. Step6: Setting up the problem Step7: A tiny toy dataset Step8: Now, we create 3 clients with small local datasets. If you are running this tutorial in colab, it may be useful to use the "mirror cell in tab" feature to pin this cell and its output in order to interpret/check the output of the functions developed below. Step9: Define constants for the raw numbers of input features (tokens/words) and labels (post tags). Our actual input/output spaces are NUM_OOV_BUCKETS = 1 larger because we add an OOV token / tag. Step10: Create batched versions of the datasets, and individual batches, which will be useful in testing code as we go. Step11: Define a model with sparse inputs Step12: Let's make sure it works, first by making predictions Step13: And some simple centralized training Step15: Building blocks for the federated computation Step17: We will select the model parameters corresponding to the MAX_TOKENS_SELECTED_PER_CLIENT most frequently occuring tokens on device. If Step18: Map global tokens to local tokens Step20: Train the local (sub)model on each client Step21: We now have all the components we need to define a simple local training loop which will run on each client. Step23: Aggregate IndexedSlices Step24: Construct a minimal federated_computation as a test Step25: Putting it all together in a federated_computation Step26: We use a basic server training function based on Federated Averaging, applying the update with a server learning rate of 1.0. It is important that we apply an update (delta) to the model, rather than simply averaging client-supplied models, as otherwise if a given slice of the model wasn't trained on by any client on a given round its coefficients could be zeroed out. Step27: We need a couple more tff.tf_computation components Step28: We're now ready to put all the pieces together! Step29: Let's train a model!
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #@test {"skip": true} !pip install --quiet --upgrade tensorflow-federated !pip install --quiet --upgrade nest-asyncio import nest_asyncio nest_asyncio.apply() import collections import itertools import numpy as np from typing import Callable, List, Tuple import tensorflow as tf import tensorflow_federated as tff tff.backends.native.set_local_python_execution_context() MAX_TOKENS_SELECTED_PER_CLIENT = 6 # There are some constraints on types # here that will require some explicit type conversions: # - `tff.federated_select` requires int32 # - `tf.SparseTensor` requires int64 indices. TOKEN_DTYPE = tf.int64 SELECT_KEY_DTYPE = tf.int32 # Type for counts of token occurences. TOKEN_COUNT_DTYPE = tf.int32 # A sparse feature vector can be thought of as a map # from TOKEN_DTYPE to FEATURE_DTYPE. # Our features are {0, 1} indicators, so we could potentially # use tf.int8 as an optimization. FEATURE_DTYPE = tf.int32 NUM_OOV_BUCKETS = 1 BatchType = collections.namedtuple('BatchType', ['tokens', 'tags']) def build_to_ids_fn(word_vocab: List[str], tag_vocab: List[str]) -> Callable[[tf.Tensor], tf.Tensor]: Constructs a function mapping examples to sequences of token indices. word_table_values = np.arange(len(word_vocab), dtype=np.int64) word_table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer(word_vocab, word_table_values), num_oov_buckets=NUM_OOV_BUCKETS) tag_table_values = np.arange(len(tag_vocab), dtype=np.int64) tag_table = tf.lookup.StaticVocabularyTable( tf.lookup.KeyValueTensorInitializer(tag_vocab, tag_table_values), num_oov_buckets=NUM_OOV_BUCKETS) def to_ids(example): Converts a Stack Overflow example to a bag-of-words/tags format. sentence = tf.strings.join([example['tokens'], example['title']], separator=' ') # We represent that label (output tags) densely. raw_tags = example['tags'] tags = tf.strings.split(raw_tags, sep='|') tags = tag_table.lookup(tags) tags, _ = tf.unique(tags) tags = tf.one_hot(tags, len(tag_vocab) + NUM_OOV_BUCKETS) tags = tf.reduce_max(tags, axis=0) # We represent the features as a SparseTensor of {0, 1}s. words = tf.strings.split(sentence) tokens = word_table.lookup(words) tokens, _ = tf.unique(tokens) # Note: We could choose to use the word counts as the feature vector # instead of just {0, 1} values (see tf.unique_with_counts). tokens = tf.reshape(tokens, shape=(tf.size(tokens), 1)) tokens_st = tf.SparseTensor( tokens, tf.ones(tf.size(tokens), dtype=FEATURE_DTYPE), dense_shape=(len(word_vocab) + NUM_OOV_BUCKETS,)) tokens_st = tf.sparse.reorder(tokens_st) return BatchType(tokens_st, tags) return to_ids def build_preprocess_fn(word_vocab, tag_vocab): @tf.function def preprocess_fn(dataset): to_ids = build_to_ids_fn(word_vocab, tag_vocab) # We *don't* shuffle in order to make this colab deterministic for # easier testing and reproducibility. # But real-world training should use `.shuffle()`. return dataset.map(to_ids, num_parallel_calls=tf.data.experimental.AUTOTUNE) return preprocess_fn # Features FRUIT_WORDS = ['apple', 'orange', 'pear', 'kiwi'] VEGETABLE_WORDS = ['carrot', 'broccoli', 'arugula', 'peas'] FISH_WORDS = ['trout', 'tuna', 'cod', 'salmon'] WORD_VOCAB = FRUIT_WORDS + VEGETABLE_WORDS + FISH_WORDS # Labels TAG_VOCAB = ['FRUIT', 'VEGETABLE', 'FISH'] preprocess_fn = build_preprocess_fn(WORD_VOCAB, TAG_VOCAB) def make_dataset(raw): d = tf.data.Dataset.from_tensor_slices( # Matches the StackOverflow formatting collections.OrderedDict( tokens=tf.constant([t[0] for t in raw]), tags=tf.constant([t[1] for t in raw]), title=['' for _ in raw])) d = preprocess_fn(d) return d # 4 distinct tokens CLIENT1_DATASET = make_dataset([ ('apple orange apple orange', 'FRUIT'), ('carrot trout', 'VEGETABLE|FISH'), ('orange apple', 'FRUIT'), ('orange', 'ORANGE|CITRUS') # 2 OOV tag ]) # 6 distinct tokens CLIENT2_DATASET = make_dataset([ ('pear cod', 'FRUIT|FISH'), ('arugula peas', 'VEGETABLE'), ('kiwi pear', 'FRUIT'), ('sturgeon', 'FISH'), # OOV word ('sturgeon bass', 'FISH') # 2 OOV words ]) # A client with all possible words & tags (13 distinct tokens). # With MAX_TOKENS_SELECTED_PER_CLIENT = 6, we won't download the model # slices for all tokens that occur on this client. CLIENT3_DATASET = make_dataset([ (' '.join(WORD_VOCAB + ['oovword']), '|'.join(TAG_VOCAB)), # Mathe the OOV token and 'salmon' occur in the largest number # of examples on this client: ('salmon oovword', 'FISH|OOVTAG') ]) print('Word vocab') for i, word in enumerate(WORD_VOCAB): print(f'{i:2d} {word}') print('\nTag vocab') for i, tag in enumerate(TAG_VOCAB): print(f'{i:2d} {tag}') NUM_WORDS = len(WORD_VOCAB) NUM_TAGS = len(TAG_VOCAB) WORD_VOCAB_SIZE = NUM_WORDS + NUM_OOV_BUCKETS TAG_VOCAB_SIZE = NUM_TAGS + NUM_OOV_BUCKETS batched_dataset1 = CLIENT1_DATASET.batch(2) batched_dataset2 = CLIENT2_DATASET.batch(3) batched_dataset3 = CLIENT3_DATASET.batch(2) batch1 = next(iter(batched_dataset1)) batch2 = next(iter(batched_dataset2)) batch3 = next(iter(batched_dataset3)) def create_logistic_model(word_vocab_size: int, vocab_tags_size: int): model = tf.keras.models.Sequential([ tf.keras.layers.InputLayer(input_shape=(word_vocab_size,), sparse=True), tf.keras.layers.Dense( vocab_tags_size, activation='sigmoid', kernel_initializer=tf.keras.initializers.zeros, # For simplicity, don't use a bias vector; this means the model # is a single tensor, and we only need sparse aggregation of # the per-token slices of the model. Generalizing to also handle # other model weights that are fully updated # (non-dense broadcast and aggregate) would be a good exercise. use_bias=False), ]) return model model = create_logistic_model(WORD_VOCAB_SIZE, TAG_VOCAB_SIZE) p = model.predict(batch1.tokens) print(p) model.compile(optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.001), loss=tf.keras.losses.BinaryCrossentropy()) model.train_on_batch(batch1.tokens, batch1.tags) @tf.function def token_count_fn(token_counts, batch): Adds counts from `batch` to the running `token_counts` sum. # Sum across the batch dimension. flat_tokens = tf.sparse.reduce_sum( batch.tokens, axis=0, output_is_sparse=True) flat_tokens = tf.cast(flat_tokens, dtype=TOKEN_COUNT_DTYPE) return tf.sparse.add(token_counts, flat_tokens) # Simple tests # Create the initial zero token counts using empty tensors. initial_token_counts = tf.SparseTensor( indices=tf.zeros(shape=(0, 1), dtype=TOKEN_DTYPE), values=tf.zeros(shape=(0,), dtype=TOKEN_COUNT_DTYPE), dense_shape=(WORD_VOCAB_SIZE,)) client_token_counts = batched_dataset1.reduce(initial_token_counts, token_count_fn) tokens = tf.reshape(client_token_counts.indices, (-1,)).numpy() print('tokens:', tokens) np.testing.assert_array_equal(tokens, [0, 1, 4, 8]) # The count is the number of *examples* in which the token/word # occurs, not the total number of occurences, since we still featurize # multiple occurences in the same example as a "1". counts = client_token_counts.values.numpy() print('counts:', counts) np.testing.assert_array_equal(counts, [2, 3, 1, 1]) @tf.function def keys_for_client(client_dataset, max_tokens_per_client): Computes a set of max_tokens_per_client keys. initial_token_counts = tf.SparseTensor( indices=tf.zeros((0, 1), dtype=TOKEN_DTYPE), values=tf.zeros((0,), dtype=TOKEN_COUNT_DTYPE), dense_shape=(WORD_VOCAB_SIZE,)) client_token_counts = client_dataset.reduce(initial_token_counts, token_count_fn) # Find the most-frequently occuring tokens tokens = tf.reshape(client_token_counts.indices, shape=(-1,)) counts = client_token_counts.values perm = tf.argsort(counts, direction='DESCENDING') tokens = tf.gather(tokens, perm) counts = tf.gather(counts, perm) num_raw_tokens = tf.shape(tokens)[0] actual_num_tokens = tf.minimum(max_tokens_per_client, num_raw_tokens) selected_tokens = tokens[:actual_num_tokens] paddings = [[0, max_tokens_per_client - tf.shape(selected_tokens)[0]]] padded_tokens = tf.pad(selected_tokens, paddings=paddings) # Make sure the type is statically determined padded_tokens = tf.reshape(padded_tokens, shape=(max_tokens_per_client,)) # We will pass these tokens as keys into `federated_select`, which # requires SELECT_KEY_DTYPE=tf.int32 keys. padded_tokens = tf.cast(padded_tokens, dtype=SELECT_KEY_DTYPE) return padded_tokens, actual_num_tokens # Simple test # Case 1: actual_num_tokens > max_tokens_per_client selected_tokens, actual_num_tokens = keys_for_client(batched_dataset1, 3) assert tf.size(selected_tokens) == 3 assert actual_num_tokens == 3 # Case 2: actual_num_tokens < max_tokens_per_client selected_tokens, actual_num_tokens = keys_for_client(batched_dataset1, 10) assert tf.size(selected_tokens) == 10 assert actual_num_tokens == 4 @tf.function def map_to_local_token_ids(client_data, client_keys): global_to_local = tf.lookup.StaticHashTable( # Note int32 -> int64 maps are not supported tf.lookup.KeyValueTensorInitializer( keys=tf.cast(client_keys, dtype=TOKEN_DTYPE), # Note we need to use tf.shape, not the static # shape client_keys.shape[0] values=tf.range(0, limit=tf.shape(client_keys)[0], dtype=TOKEN_DTYPE)), # We use -1 for tokens that were not selected, which can occur for clients # with more than MAX_TOKENS_SELECTED_PER_CLIENT distinct tokens. # We will simply remove these invalid indices from the batch below. default_value=-1) def to_local_ids(sparse_tokens): indices_t = tf.transpose(sparse_tokens.indices) batch_indices = indices_t[0] # First column tokens = indices_t[1] # Second column tokens = tf.map_fn( lambda global_token_id: global_to_local.lookup(global_token_id), tokens) # Remove tokens that aren't actually available (looked up as -1): available_tokens = tokens >= 0 tokens = tokens[available_tokens] batch_indices = batch_indices[available_tokens] updated_indices = tf.transpose( tf.concat([[batch_indices], [tokens]], axis=0)) st = tf.sparse.SparseTensor( updated_indices, tf.ones(tf.size(tokens), dtype=FEATURE_DTYPE), dense_shape=sparse_tokens.dense_shape) st = tf.sparse.reorder(st) return st return client_data.map(lambda b: BatchType(to_local_ids(b.tokens), b.tags)) # Simple test client_keys, actual_num_tokens = keys_for_client( batched_dataset3, MAX_TOKENS_SELECTED_PER_CLIENT) client_keys = client_keys[:actual_num_tokens] d = map_to_local_token_ids(batched_dataset3, client_keys) batch = next(iter(d)) all_tokens = tf.gather(batch.tokens.indices, indices=1, axis=1) # Confirm we have local indices in the range [0, MAX): assert tf.math.reduce_max(all_tokens) < MAX_TOKENS_SELECTED_PER_CLIENT assert tf.math.reduce_max(all_tokens) >= 0 @tf.function def slices_dataset_to_tensor(slices_dataset): Convert a dataset of slices to a tensor. # Use batching to gather all of the slices into a single tensor. d = slices_dataset.batch(MAX_TOKENS_SELECTED_PER_CLIENT, drop_remainder=False) iter_d = iter(d) tensor = next(iter_d) # Make sure we have consumed everything opt = iter_d.get_next_as_optional() tf.Assert(tf.logical_not(opt.has_value()), data=[''], name='CHECK_EMPTY') return tensor # Simple test weights = np.random.random( size=(MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE)).astype(np.float32) model_slices_as_dataset = tf.data.Dataset.from_tensor_slices(weights) weights2 = slices_dataset_to_tensor(model_slices_as_dataset) np.testing.assert_array_equal(weights, weights2) @tf.function def client_train_fn(model, client_optimizer, model_slices_as_dataset, client_data, client_keys, actual_num_tokens): initial_model_weights = slices_dataset_to_tensor(model_slices_as_dataset) assert len(model.trainable_variables) == 1 model.trainable_variables[0].assign(initial_model_weights) # Only keep the "real" (unpadded) keys. client_keys = client_keys[:actual_num_tokens] client_data = map_to_local_token_ids(client_data, client_keys) loss_fn = tf.keras.losses.BinaryCrossentropy() for features, labels in client_data: with tf.GradientTape() as tape: predictions = model(features) loss = loss_fn(labels, predictions) grads = tape.gradient(loss, model.trainable_variables) client_optimizer.apply_gradients(zip(grads, model.trainable_variables)) model_weights_delta = model.trainable_weights[0] - initial_model_weights model_weights_delta = tf.slice(model_weights_delta, begin=[0, 0], size=[actual_num_tokens, -1]) return client_keys, model_weights_delta # Simple test # Note if you execute this cell a second time, you need to also re-execute # the preceeding cell to avoid "tf.function-decorated function tried to # create variables on non-first call" errors. on_device_model = create_logistic_model(MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE) client_optimizer = tf.keras.optimizers.SGD(learning_rate=0.001) client_keys, actual_num_tokens = keys_for_client( batched_dataset2, MAX_TOKENS_SELECTED_PER_CLIENT) model_slices_as_dataset = tf.data.Dataset.from_tensor_slices( np.zeros((MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE), dtype=np.float32)) keys, delta = client_train_fn( on_device_model, client_optimizer, model_slices_as_dataset, client_data=batched_dataset3, client_keys=client_keys, actual_num_tokens=actual_num_tokens) print(delta) def federated_indexed_slices_sum(slice_indices, slice_values, dense_shape): Sumes IndexedSlices@CLIENTS to a dense @SERVER Tensor. Intermediate aggregation is performed by converting to a dense representation, which may not be suitable for all applications. Args: slice_indices: An IndexedSlices.indices tensor @CLIENTS. slice_values: An IndexedSlices.values tensor @CLIENTS. dense_shape: A statically known dense shape. Returns: A dense tensor placed @SERVER representing the sum of the client's IndexedSclies. slices_dtype = slice_values.type_signature.member.dtype zero = tff.tf_computation( lambda: tf.zeros(dense_shape, dtype=slices_dtype))() @tf.function def accumulate_slices(dense, client_value): indices, slices = client_value # There is no built-in way to add `IndexedSlices`, but # tf.convert_to_tensor is a quick way to convert to a dense representation # so we can add them. return dense + tf.convert_to_tensor( tf.IndexedSlices(slices, indices, dense_shape)) return tff.federated_aggregate( (slice_indices, slice_values), zero=zero, accumulate=tff.tf_computation(accumulate_slices), merge=tff.tf_computation(lambda d1, d2: tf.add(d1, d2, name='merge')), report=tff.tf_computation(lambda d: d)) dense_shape = (6, 2) indices_type = tff.TensorType(tf.int64, (None,)) values_type = tff.TensorType(tf.float32, (None, 2)) client_slice_type = tff.type_at_clients( (indices_type, values_type)) @tff.federated_computation(client_slice_type) def test_sum_indexed_slices(indices_values_at_client): indices, values = indices_values_at_client return federated_indexed_slices_sum(indices, values, dense_shape) print(test_sum_indexed_slices.type_signature) x = tf.IndexedSlices( values=np.array([[2., 2.1], [0., 0.1], [1., 1.1], [5., 5.1]], dtype=np.float32), indices=[2, 0, 1, 5], dense_shape=dense_shape) y = tf.IndexedSlices( values=np.array([[0., 0.3], [3.1, 3.2]], dtype=np.float32), indices=[1, 3], dense_shape=dense_shape) # Sum one. result = test_sum_indexed_slices([(x.indices, x.values)]) np.testing.assert_array_equal(tf.convert_to_tensor(x), result) # Sum two. expected = [[0., 0.1], [1., 1.4], [2., 2.1], [3.1, 3.2], [0., 0.], [5., 5.1]] result = test_sum_indexed_slices([(x.indices, x.values), (y.indices, y.values)]) np.testing.assert_array_almost_equal(expected, result) DENSE_MODEL_SHAPE = (WORD_VOCAB_SIZE, TAG_VOCAB_SIZE) client_data_type = tff.SequenceType(batched_dataset1.element_spec) model_type = tff.TensorType(tf.float32, shape=DENSE_MODEL_SHAPE) @tff.tf_computation def server_update(current_model_weights, update_sum, num_clients): average_update = update_sum / num_clients return current_model_weights + average_update # Function to select slices from the model weights in federated_select: select_fn = tff.tf_computation( lambda model_weights, index: tf.gather(model_weights, index)) # We need to wrap `client_train_fn` as a `tff.tf_computation`, making # sure we do any operations that might construct `tf.Variable`s outside # of the `tf.function` we are wrapping. @tff.tf_computation def client_train_fn_tff(model_slices_as_dataset, client_data, client_keys, actual_num_tokens): # Note this is amaller than the global model, using # MAX_TOKENS_SELECTED_PER_CLIENT which is much smaller than WORD_VOCAB_SIZE. # W7e would like a model of size `actual_num_tokens`, but we # can't build the model dynamically, so we will slice off the padded # weights at the end. client_model = create_logistic_model(MAX_TOKENS_SELECTED_PER_CLIENT, TAG_VOCAB_SIZE) client_optimizer = tf.keras.optimizers.SGD(learning_rate=0.1) return client_train_fn(client_model, client_optimizer, model_slices_as_dataset, client_data, client_keys, actual_num_tokens) @tff.tf_computation def keys_for_client_tff(client_data): return keys_for_client(client_data, MAX_TOKENS_SELECTED_PER_CLIENT) @tff.federated_computation( tff.type_at_server(model_type), tff.type_at_clients(client_data_type)) def sparse_model_update(server_model, client_data): max_tokens = tff.federated_value(MAX_TOKENS_SELECTED_PER_CLIENT, tff.SERVER) keys_at_clients, actual_num_tokens = tff.federated_map( keys_for_client_tff, client_data) model_slices = tff.federated_select(keys_at_clients, max_tokens, server_model, select_fn) update_keys, update_slices = tff.federated_map( client_train_fn_tff, (model_slices, client_data, keys_at_clients, actual_num_tokens)) dense_update_sum = federated_indexed_slices_sum(update_keys, update_slices, DENSE_MODEL_SHAPE) num_clients = tff.federated_sum(tff.federated_value(1.0, tff.CLIENTS)) updated_server_model = tff.federated_map( server_update, (server_model, dense_update_sum, num_clients)) return updated_server_model print(sparse_model_update.type_signature) server_model = create_logistic_model(WORD_VOCAB_SIZE, TAG_VOCAB_SIZE) server_model.compile( # Compile to make evaluation easy. optimizer=tf.keras.optimizers.Adagrad(learning_rate=0.0), # Unused loss=tf.keras.losses.BinaryCrossentropy(), metrics=[ tf.keras.metrics.Precision(name='precision'), tf.keras.metrics.AUC(name='auc'), tf.keras.metrics.Recall(top_k=2, name='recall_at_2'), ]) def evaluate(model, dataset, name): metrics = model.evaluate(dataset, verbose=0) metrics_str = ', '.join([f'{k}={v:.2f}' for k, v in (zip(server_model.metrics_names, metrics))]) print(f'{name}: {metrics_str}') print('Before training') evaluate(server_model, batched_dataset1, 'Client 1') evaluate(server_model, batched_dataset2, 'Client 2') evaluate(server_model, batched_dataset3, 'Client 3') model_weights = server_model.trainable_weights[0] client_datasets = [batched_dataset1, batched_dataset2, batched_dataset3] for _ in range(10): # Run 10 rounds of FedAvg # We train on 1, 2, or 3 clients per round, selecting # randomly. cohort_size = np.random.randint(1, 4) clients = np.random.choice([0, 1, 2], cohort_size, replace=False) print('Training on clients', clients) model_weights = sparse_model_update( model_weights, [client_datasets[i] for i in clients]) server_model.set_weights([model_weights]) print('After training') evaluate(server_model, batched_dataset1, 'Client 1') evaluate(server_model, batched_dataset2, 'Client 2') evaluate(server_model, batched_dataset3, 'Client 3') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Constrained problem Step2: Modeling and joint acquisition function Step3: Initial belief Step4: Running Bayesian Optimizer Step5: Results Step6: If we inspect the sampling distribution, we can see that the amount of samples in the infeasible regions is limited. The optimization has focussed on the feasible areas. In addition, it has been active mostly in two optimal regions. Step7: Finally, the evolution of the best value over the number of iterations clearly shows a very good solution is already found after only a few evaluations.
<ASSISTANT_TASK:> Python Code: %matplotlib inline import matplotlib.pyplot as plt import gpflow import gpflowopt import numpy as np # Objective & constraint def townsend(X): return -(np.cos((X[:,0]-0.1)*X[:,1])**2 + X[:,0] * np.sin(3*X[:,0]+X[:,1]))[:,None] def constraint(X): return -(-np.cos(1.5*X[:,0]+np.pi)*np.cos(1.5*X[:,1])+np.sin(1.5*X[:,0]+np.pi)*np.sin(1.5*X[:,1]))[:,None] # Setup input domain domain = gpflowopt.domain.ContinuousParameter('x1', -2.25, 2.5) + \ gpflowopt.domain.ContinuousParameter('x2', -2.5, 1.75) # Plot def plotfx(): X = gpflowopt.design.FactorialDesign(101, domain).generate() Zo = townsend(X) Zc = constraint(X) mask = Zc>=0 Zc[mask] = np.nan Zc[np.logical_not(mask)] = 1 Z = Zo * Zc shape = (101, 101) f, axes = plt.subplots(1, 1, figsize=(7, 5)) axes.contourf(X[:,0].reshape(shape), X[:,1].reshape(shape), Z.reshape(shape)) axes.set_xlabel('x1') axes.set_ylabel('x2') axes.set_xlim([domain.lower[0], domain.upper[0]]) axes.set_ylim([domain.lower[1], domain.upper[1]]) return axes plotfx(); # Initial evaluations design = gpflowopt.design.LatinHyperCube(11, domain) X = design.generate() Yo = townsend(X) Yc = constraint(X) # Models objective_model = gpflow.gpr.GPR(X, Yo, gpflow.kernels.Matern52(2, ARD=True)) objective_model.likelihood.variance = 0.01 constraint_model = gpflow.gpr.GPR(np.copy(X), Yc, gpflow.kernels.Matern52(2, ARD=True)) constraint_model.kern.lengthscales.transform = gpflow.transforms.Log1pe(1e-3) constraint_model.likelihood.variance = 0.01 constraint_model.likelihood.variance.prior = gpflow.priors.Gamma(1./4.,1.0) # Setup ei = gpflowopt.acquisition.ExpectedImprovement(objective_model) pof = gpflowopt.acquisition.ProbabilityOfFeasibility(constraint_model) joint = ei * pof def plot(): Xeval = gpflowopt.design.FactorialDesign(101, domain).generate() Yevala,_ = joint.operands[0].models[0].predict_f(Xeval) Yevalb,_ = joint.operands[1].models[0].predict_f(Xeval) Yevalc = np.maximum(ei.evaluate(Xeval), 0) Yevald = pof.evaluate(Xeval) Yevale = np.maximum(joint.evaluate(Xeval), 0) shape = (101, 101) plots = [('Objective model', Yevala), ('Constraint model', Yevalb), ('EI', Yevalc), ('PoF', Yevald), ('EI * PoF', Yevale)] plt.figure(figsize=(10,10)) for i, plot in enumerate(plots): if i == 4: ax = plt.subplot2grid((3, 4), (2, 1), colspan=2) else: ax = plt.subplot2grid((3, 2), (int(i/2), i % 2)) ax.contourf(Xeval[:,0].reshape(shape), Xeval[:,1].reshape(shape), plot[1].reshape(shape)) ax.scatter(joint.data[0][:,0], joint.data[0][:,1], c='w') ax.set_title(plot[0]) ax.set_xlabel('x1') ax.set_ylabel('x2') ax.set_xlim([domain.lower[0], domain.upper[0]]) ax.set_ylim([domain.lower[1], domain.upper[1]]) plt.tight_layout() # Plot representing the model belief, and the belief mapped to EI and PoF plot() print(constraint_model) # First setup the optimization strategy for the acquisition function # Combining MC step followed by L-BFGS-B acquisition_opt = gpflowopt.optim.StagedOptimizer([gpflowopt.optim.MCOptimizer(domain, 200), gpflowopt.optim.SciPyOptimizer(domain)]) # Then run the BayesianOptimizer for 50 iterations optimizer = gpflowopt.BayesianOptimizer(domain, joint, optimizer=acquisition_opt, verbose=True) result = optimizer.optimize([townsend, constraint], n_iter=50) print(result) # Plotting belief again print(constraint_model) plot() # Plot function, overlayed by the constraint. Also plot the samples axes = plotfx() valid = joint.feasible_data_index() axes.scatter(joint.data[0][valid,0], joint.data[0][valid,1], label='feasible data', c='w') axes.scatter(joint.data[0][np.logical_not(valid),0], joint.data[0][np.logical_not(valid),1], label='data', c='r'); axes.legend() f, axes = plt.subplots(1, 1, figsize=(7, 5)) f = joint.data[1][:,0] f[joint.data[1][:,1] > 0] = np.inf axes.plot(np.arange(0, joint.data[0].shape[0]), np.minimum.accumulate(f)) axes.set_ylabel('fmin') axes.set_xlabel('Number of evaluated points'); <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Curve data Step2: You can also access curves by index (remembering that the first index is zero but the first curve is the depth). Step3: All the curves are stored as a two-dimensional ndarray under the data attribute Step4: Header information Step5: In order from top to bottom as they usually are in LAS files, the header sections are Step6: To change metadata information you have to edit the relevant field of the HeaderItem object Step7: The other section with header items is very similar... Step8: For convenience there's a special attribute which brings together all the header metadata mnemonics and values Step9: The ~Other section is left as raw text. Step10: Note that commented-out lines beginning with # elsewhere in the file are not read in at all at the moment (this will be fixed in the future). Step11: Notice of course that whereas l["NEUT"] returns you a numpy.ndarray directly, using the get_curve method gives you the whole Curve object, with the unit, value (usually an API curve type code), and descr attributes as well as the data.
<ASSISTANT_TASK:> Python Code: import os import lasio l = lasio.read(os.path.join("..", "tests", "examples", "6038187_v1.2.las")) print(type(l)) print(l._text) l.keys() l['NEUT'] print(l['GAMN']) print(l[2]) print(l["COND"]) print(l[-1]) print(l.data.shape) print(l.data) from lasio.las import HeaderItem example = HeaderItem(mnemonic="ROP", unit="m/min", value=2.3, descr="Rate of penetration") print(example) print(example.mnemonic) print(example.unit) print(example.value) print(example.descr) l.version l.version['VERS'].value l.well l.well['SRVC'].value = "My logging company -- not anyone else's" print(l.well["SRVC"]) l.params l.metadata print l.other l.curves neutron_log = l.get_curve("NEUT") print(neutron_log) print(l["DEPT"]) print(l.index) import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec %matplotlib inline fig = plt.figure(figsize=(18, 5)) gs = gridspec.GridSpec(1, len(l.curves)-1, wspace=0.2) for i, curve in enumerate(l.curves[1:]): if i > 0: shareax = ax else: shareax = False ax = fig.add_subplot(gs[i], sharey=None) ax.plot(curve.data, l.index) ax.set_title(curve.mnemonic) if i > 0: ax.set_yticklabels([]) ax.set_ylim(*ax.get_ylim()[::-1]) ax.set_xticklabels(["%.0f" % xi if xi in ax.get_xlim() else "" for xi in ax.get_xticks()], rotation=30) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Python Basics (2016-09-09) Step2: Data Types Step3: What will be the data type of a+b? Step4: It's a float. But why? If it was an integer, information would get lost. Python chooses the simplest data type that preserves all information. However, this can be tricky if you don't pay attention... Step5: Other common data types Step6: Simple Arithmetics Step7: Again, be aware of the data types Step8: For more complex mathematical operations, refer to the math or numpy modules, for instance.
<ASSISTANT_TASK:> Python Code: # this is a single line comment this is a multi line comment a = 5.1 print 'a', type(a) b = 3 print 'b', type(b) print a+b, type(a+b) print '3/2', 3/2 # integer divided by integer print '3./2', 3./2 # float divided by integer c = 'g' print 'c', type(c) d = 'stuff' print 'd', type(d) e = True print 'e', type(e) print a+b # addition print a-b # subtraction print a*b # multiplication print a/b # division print a//b # floor division print a%b # modulus print a**2 # power #print a+d # results in a TypeError print 'abc' + "def" # concatenate strings (' and " can both be used, but not mixed) print 'thereisabunnyhidinginhere'.find('bunny') # index where the bunny hides print 'thereisabunnyhidinginhere'.find('wolf') # return -1 if failed print ' lots of space '.strip() # strip blanks print '____lots of underscores____'.strip('_') # strip underscores print 'string_with_underscores'.replace('_', ' ') # replace underscores print 'list,of,things,like,in,a,csv,file'.split(',') # split in to list print 'one\nword\nper\nline' # use '\n' to represent a line break print '123abc'.isalpha() # check if string consists of letters only print '123'.isdigit() # check if string consists of numbers only <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: Jupyter notebooks Step4: Some common terminology Step5: Vandermonde matrices Step6: This type of matrix is very common; we can also create it with numpy.vander. Step7: Now suppose we know the value of a polynomial at a few points. Step8: Evidently $p(x) = 12.983 x^3 - 1.748 x^2 - 9.476 x + 3.352$ is the unique cubic polynomial that interpolates those points. Step9: Gram-Schmidt Orthogonalization Step10: Theorem Step11: Classical Gram-Schmidt is highly parallel, but unstable, as evidenced by the lack of orthogonality in $Q$. Step13: Householder triangularization Step14: Choice of two projections Step15: Inside qr_householder1, we have the lines Step16: The error $QR - A$ is still $10^{-8}$ for this very well-conditioned matrix so something else must be at play here. Step18: We now have a usable implementation of Householder QR. There are some further concerns for factoring rank-deficient matrices. We will visit the concept of pivoting later, in the context of LU and Cholesky factorization. Step19: Cost of Householder factorization Step20: The Singular Value Decomposition
<ASSISTANT_TASK:> Python Code: %matplotlib notebook import numpy from matplotlib import pyplot def matmult1(A, x): Entries of y are dot products of rows of A with x y = numpy.zeros_like(A[:,0]) for i in range(len(A)): row = A[i,:] for j in range(len(row)): y[i] += row[j] * x[j] return y A = numpy.array([[1,2],[3,5],[7,11]]) x = numpy.array([10,20]) matmult1(A, x) def matmult2(A, x): Same idea, but more compactly y = numpy.zeros_like(A[:,0]) for i,row in enumerate(A): y[i] = row.dot(x) return y matmult2(A, x) def matmult3(A, x): y is a linear expansion of the columns of A y = numpy.zeros_like(A[:,0]) for j,col in enumerate(A.T): y += col * x[j] return y matmult3(A, x) # We will use this version A.dot(x) B = numpy.array([[2, 3],[0, 4]]) print(B) print(B.dot(B.T), B.T.dot(B)) Binv = numpy.linalg.inv(B) Binv.dot(B), B.dot(Binv) x = numpy.linspace(-1,1) A = numpy.array([x**3, x**2, x, 1+0*x]).T print('shape =', A.shape) # This is a tall matrix with 4 columns pyplot.style.use('ggplot') pyplot.figure() pyplot.plot(x, A) pyplot.ylim((-1.1,1.1)) pyplot.show() pyplot.figure() p = numpy.array([5,0,-3,0]) pyplot.plot(x, A.dot(p)) x1 = numpy.array([-0.9, 0.1, 0.5, 0.8]) # points where we know values y = numpy.array([1, 2.4, -0.2, 1.3]) # values at those points pyplot.figure() pyplot.plot(x1, y, '*') B = numpy.vander(x1) # Vandermonde matrix at the known points p = numpy.linalg.solve(B, y) # Compute the polynomial coefficients print(p) pyplot.plot(x, A.dot(p)) # Plot the polynomial evaluated at all points print('B =', B, '\np =', p) # Make some polynomials q0 = A.dot(numpy.array([0,0,0,.5])) # .5 q1 = A.dot(numpy.array([0,0,1,0])) # x q2 = A.dot(numpy.array([0,1,0,0])) # x^2 pyplot.figure() pyplot.plot(x, numpy.array([q0, q1, q2]).T) # Inner products of even and odd functions q0 = q0 / numpy.linalg.norm(q0) q1.dot(q0), q2.dot(q0), q2.dot(q1) # What is the constant component of q2? pyplot.figure() pyplot.plot(x, q2.dot(q0)*q0) # Let's project that away so that q2 is orthogonal to q0 q2 = q2 - q2.dot(q0)*q0 Q = numpy.array([q0, q1, q2]).T print(Q.T.dot(Q)) pyplot.figure() pyplot.plot(x, Q) def gram_schmidt_naive(X): Q = numpy.zeros_like(X) R = numpy.zeros((len(X.T),len(X.T))) for i in range(len(Q.T)): v = X[:,i].copy() for j in range(i): r = v.dot(Q[:,j]) R[j,i] = r v -= r * Q[:,j] # "modified Gram-Schmidt" - remove each component before next dot product R[i,i] = numpy.linalg.norm(v) Q[:,i] = v / R[i,i] return Q, R Q, R = gram_schmidt_naive(A) print(Q.T.dot(Q)) print(numpy.linalg.norm(Q.dot(R)-A)) pyplot.figure() pyplot.plot(x, Q) Q, R = gram_schmidt_naive(numpy.vander(x, 4, increasing=True)) pyplot.figure() pyplot.plot(x, Q) x1 = numpy.array([-0.9, 0.1, 0.5, 0.8]) # points where we know values y = numpy.array([1, 2.4, -0.2, 1.3]) # values at those points pyplot.figure() pyplot.plot(x1, y, '*') B = numpy.vander(x1, 2) # Vandermonde matrix at the known points Q, R = gram_schmidt_naive(B) p = numpy.linalg.solve(R, Q.T.dot(y)) # Compute the polynomial coefficients print(p) pyplot.plot(x, numpy.vander(x,2).dot(p)) # Plot the polynomial evaluated at all points print('B =', B, '\np =', p) m = 20 V = numpy.vander(numpy.linspace(-1,1,m), increasing=False) Q, R = gram_schmidt_naive(V) def qr_test(qr, V): Q, R = qr(V) m = len(Q.T) print(qr.__name__, numpy.linalg.norm(Q.dot(R) - V), numpy.linalg.norm(Q.T.dot(Q) - numpy.eye(m))) qr_test(gram_schmidt_naive, V) qr_test(numpy.linalg.qr, V) def gram_schmidt_classical(X): Q = numpy.zeros_like(X) R = numpy.zeros((len(X.T),len(X.T))) for i in range(len(Q.T)): v = X[:,i].copy() R[:i,i] = Q[:,:i].T.dot(v) v -= Q[:,:i].dot(R[:i,i]) R[i,i] = numpy.linalg.norm(v) Q[:,i] = v / R[i,i] return Q, R qr_test(gram_schmidt_classical, V) def gram_schmidt_modified(X): Q = X.copy() R = numpy.zeros((len(X.T), len(X.T))) for i in range(len(Q.T)): R[i,i] = numpy.linalg.norm(Q[:,i]) Q[:,i] /= R[i,i] R[i,i+1:] = Q[:,i+1:].T.dot(Q[:,i]) Q[:,i+1:] -= numpy.outer(Q[:,i], R[i,i+1:]) return Q, R qr_test(gram_schmidt_modified, V) def householder_Q_times(V, x): Apply orthogonal matrix represented as list of Householder reflectors y = x.copy() for i in reversed(range(len(V))): y[i:] -= 2 * V[i] * V[i].dot(y[i:]) return y def qr_householder1(A): "Compute QR factorization using naive Householder reflection" m, n = A.shape R = A.copy() V = [] for i in range(n): x = R[i:,i] v = -x v[0] += numpy.linalg.norm(x) v = v/numpy.linalg.norm(v) # Normalized reflector plane R[i:,i:] -= 2 * numpy.outer(v, v.dot(R[i:,i:])) V.append(v) # Storing reflectors is equivalent to storing orthogonal matrix Q = numpy.eye(m, n) for i in range(n): Q[:,i] = householder_Q_times(V, Q[:,i]) return Q, numpy.triu(R[:n,:]) qr_test(qr_householder1, numpy.array([[1.,2],[3,4],[5,6]])) qr_test(qr_householder1, V) qr_test(numpy.linalg.qr, V) qr_test(qr_householder1, numpy.eye(1)) qr_test(qr_householder1, numpy.eye(3,2)) qr_test(qr_householder1, numpy.array([[1.,1], [2e-8,1]])) print(qr_householder1(numpy.array([[1.,1], [2e-8,1]]))) def qr_householder2(A): "Compute QR factorization using Householder reflection" m, n = A.shape R = A.copy() V = [] for i in range(n): v = R[i:,i].copy() v[0] += numpy.sign(v[0])*numpy.linalg.norm(v) # Choose the further of the two reflections v = v/numpy.linalg.norm(v) # Normalized reflector plane R[i:,i:] -= 2 * numpy.outer(v, v.dot(R[i:,i:])) V.append(v) # Storing reflectors is equivalent to storing orthogonal matrix Q = numpy.eye(m, n) for i in range(n): Q[:,i] = householder_Q_times(V, Q[:,i]) return Q, numpy.triu(R[:n,:]) qr_test(qr_householder2, numpy.eye(3,2)) qr_test(qr_householder2, numpy.array([[1.,1], [1e-8,1]])) print(qr_householder2(numpy.array([[1.,1], [1e-8,1]]))) qr_test(qr_householder2, V) def R_solve(R, b): Solve Rx = b using back substitution. x = b.copy() m = len(b) for i in reversed(range(m)): x[i] -= R[i,i+1:].dot(x[i+1:]) x[i] /= R[i,i] return x Q, R = numpy.linalg.qr(A) b = Q.T.dot(A.dot(numpy.array([1,2,3,4]))) numpy.linalg.norm(R_solve(R, b) - numpy.linalg.solve(R, b)) R_solve(R, b) # Test accuracy of solver for an ill-conditioned square matrix x = numpy.linspace(-1,1,19) A = numpy.vander(x) print('cond(A) = ',numpy.linalg.cond(A)) Q, R = numpy.linalg.qr(A) print('cond(R^{-1} Q^T A) =', numpy.linalg.cond(numpy.linalg.solve(R, Q.T.dot(A)))) L = numpy.linalg.cholesky(A.T.dot(A)) print('cond(L^{-T} L^{-1} A^T A) =', numpy.linalg.cond(numpy.linalg.solve(L.T, numpy.linalg.solve(L, A.T.dot(A))))) m = 10 x = numpy.cos(numpy.linspace(0,numpy.pi,m)) f = 1.0*(x > 0) + (x < 0.5) A = numpy.vander(x) Q, R = numpy.linalg.qr(A) p = numpy.linalg.solve(R, Q.T.dot(f)) y = numpy.linspace(-1,1,50) g = numpy.vander(y, m).dot(p) pyplot.figure() pyplot.plot(x, f, '*') pyplot.plot(y, g) print(numpy.linalg.cond(A)) '%10e' % numpy.linalg.cond(numpy.vander(numpy.linspace(-1,1,100),20)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step6: The pipeline uses a mix of custom and pre-build components. Step7: The custom components execute in a container image defined in base_image/Dockerfile. Step8: The training step in the pipeline employes the AI Platform Training component to schedule a AI Platform Training job in a custom training container. The custom training image is defined in trainer_image/Dockerfile. Step9: Building and deploying the pipeline Step10: HINT Step11: Build the trainer image Step12: Note Step13: Build the base image for custom components Step14: Compile the pipeline Step15: Use the CLI compiler to compile the pipeline Step16: The result is the covertype_training_pipeline.yaml file. Step17: Deploy the pipeline package Step18: Submitting pipeline runs Step19: Submit a run Step20: Run the pipeline using the kfp command line by retrieving the variables from the environment to pass to the pipeline where
<ASSISTANT_TASK:> Python Code: !grep 'BASE_IMAGE =' -A 5 pipeline/covertype_training_pipeline.py %%writefile ./pipeline/covertype_training_pipeline.py # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. KFP orchestrating BigQuery and Cloud AI Platform services. import os from helper_components import evaluate_model from helper_components import retrieve_best_run from jinja2 import Template import kfp from kfp.components import func_to_container_op from kfp.dsl.types import Dict from kfp.dsl.types import GCPProjectID from kfp.dsl.types import GCPRegion from kfp.dsl.types import GCSPath from kfp.dsl.types import String from kfp.gcp import use_gcp_secret # Defaults and environment settings BASE_IMAGE = os.getenv('BASE_IMAGE') TRAINER_IMAGE = os.getenv('TRAINER_IMAGE') RUNTIME_VERSION = os.getenv('RUNTIME_VERSION') PYTHON_VERSION = os.getenv('PYTHON_VERSION') COMPONENT_URL_SEARCH_PREFIX = os.getenv('COMPONENT_URL_SEARCH_PREFIX') USE_KFP_SA = os.getenv('USE_KFP_SA') TRAINING_FILE_PATH = 'datasets/training/data.csv' VALIDATION_FILE_PATH = 'datasets/validation/data.csv' TESTING_FILE_PATH = 'datasets/testing/data.csv' # Parameter defaults SPLITS_DATASET_ID = 'splits' HYPERTUNE_SETTINGS = { "hyperparameters": { "goal": "MAXIMIZE", "maxTrials": 6, "maxParallelTrials": 3, "hyperparameterMetricTag": "accuracy", "enableTrialEarlyStopping": True, "params": [ { "parameterName": "max_iter", "type": "DISCRETE", "discreteValues": [500, 1000] }, { "parameterName": "alpha", "type": "DOUBLE", "minValue": 0.0001, "maxValue": 0.001, "scaleType": "UNIT_LINEAR_SCALE" } ] } } # Helper functions def generate_sampling_query(source_table_name, num_lots, lots): Prepares the data sampling query. sampling_query_template = SELECT * FROM `{{ source_table }}` AS cover WHERE MOD(ABS(FARM_FINGERPRINT(TO_JSON_STRING(cover))), {{ num_lots }}) IN ({{ lots }}) query = Template(sampling_query_template).render( source_table=source_table_name, num_lots=num_lots, lots=str(lots)[1:-1]) return query # Create component factories component_store = kfp.components.ComponentStore( local_search_paths=None, url_search_prefixes=[COMPONENT_URL_SEARCH_PREFIX]) bigquery_query_op = component_store.load_component('bigquery/query') mlengine_train_op = component_store.load_component('ml_engine/train') mlengine_deploy_op = component_store.load_component('ml_engine/deploy') retrieve_best_run_op = func_to_container_op( retrieve_best_run, base_image=BASE_IMAGE) evaluate_model_op = func_to_container_op(evaluate_model, base_image=BASE_IMAGE) @kfp.dsl.pipeline( name='Covertype Classifier Training', description='The pipeline training and deploying the Covertype classifierpipeline_yaml' ) def covertype_train(project_id, region, source_table_name, gcs_root, dataset_id, evaluation_metric_name, evaluation_metric_threshold, model_id, version_id, replace_existing_version, hypertune_settings=HYPERTUNE_SETTINGS, dataset_location='US'): Orchestrates training and deployment of an sklearn model. # Create the training split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[1, 2, 3, 4]) training_file_path = '{}/{}'.format(gcs_root, TRAINING_FILE_PATH) create_training_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=training_file_path, dataset_location=dataset_location) # Create the validation split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[8]) validation_file_path = '{}/{}'.format(gcs_root, VALIDATION_FILE_PATH) create_validation_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=validation_file_path, dataset_location=dataset_location) # Create the testing split query = generate_sampling_query( source_table_name=source_table_name, num_lots=10, lots=[9]) testing_file_path = '{}/{}'.format(gcs_root, TESTING_FILE_PATH) create_testing_split = bigquery_query_op( query=query, project_id=project_id, dataset_id=dataset_id, table_id='', output_gcs_path=testing_file_path, dataset_location=dataset_location) # Tune hyperparameters tune_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--hptune', 'True' ] job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir/hypertune', kfp.dsl.RUN_ID_PLACEHOLDER) hypertune = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=tune_args, training_input=hypertune_settings) # Retrieve the best trial get_best_trial = retrieve_best_run_op( project_id, hypertune.outputs['job_id']) # Train the model on a combined training and validation datasets job_dir = '{}/{}/{}'.format(gcs_root, 'jobdir', kfp.dsl.RUN_ID_PLACEHOLDER) train_args = [ '--training_dataset_path', create_training_split.outputs['output_gcs_path'], '--validation_dataset_path', create_validation_split.outputs['output_gcs_path'], '--alpha', get_best_trial.outputs['alpha'], '--max_iter', get_best_trial.outputs['max_iter'], '--hptune', 'False' ] train_model = mlengine_train_op( project_id=project_id, region=region, master_image_uri=TRAINER_IMAGE, job_dir=job_dir, args=train_args) # Evaluate the model on the testing split eval_model = evaluate_model_op( dataset_path=str(create_testing_split.outputs['output_gcs_path']), model_path=str(train_model.outputs['job_dir']), metric_name=evaluation_metric_name) # Deploy the model if the primary metric is better than threshold with kfp.dsl.Condition(eval_model.outputs['metric_value'] > evaluation_metric_threshold): deploy_model = mlengine_deploy_op( model_uri=train_model.outputs['job_dir'], project_id=project_id, model_id=model_id, version_id=version_id, runtime_version=RUNTIME_VERSION, python_version=PYTHON_VERSION, replace_existing_version=replace_existing_version) # Configure the pipeline to run using the service account defined # in the user-gcp-sa k8s secret if USE_KFP_SA == 'True': kfp.dsl.get_pipeline_conf().add_op_transformer( use_gcp_secret('user-gcp-sa')) !cat base_image/Dockerfile !cat trainer_image/Dockerfile !gsutil ls REGION = 'us-central1' ENDPOINT = '337dd39580cbcbd2-dot-us-central2.pipelines.googleusercontent.com' # TO DO: REPLACE WITH YOUR ENDPOINT ARTIFACT_STORE_URI = 'gs://qwiklabs-gcp-xx-xxxxxxx-kubeflowpipelines-default' # TO DO: REPLACE WITH YOUR ARTIFACT_STORE NAME PROJECT_ID = !(gcloud config get-value core/project) PROJECT_ID = PROJECT_ID[0] IMAGE_NAME='trainer_image' TAG='latest' TRAINER_IMAGE='gcr.io/{}/{}:{}'.format(PROJECT_ID, IMAGE_NAME, TAG) !gcloud builds submit --timeout 15m --tag $TRAINER_IMAGE trainer_image IMAGE_NAME='base_image' TAG='latest' BASE_IMAGE='gcr.io/{}/{}:{}'.format(PROJECT_ID, IMAGE_NAME, TAG) !gcloud builds submit --timeout 15m --tag $BASE_IMAGE base_image USE_KFP_SA = False COMPONENT_URL_SEARCH_PREFIX = 'https://raw.githubusercontent.com/kubeflow/pipelines/0.2.5/components/gcp/' RUNTIME_VERSION = '1.15' PYTHON_VERSION = '3.7' %env USE_KFP_SA={USE_KFP_SA} %env BASE_IMAGE={BASE_IMAGE} %env TRAINER_IMAGE={TRAINER_IMAGE} %env COMPONENT_URL_SEARCH_PREFIX={COMPONENT_URL_SEARCH_PREFIX} %env RUNTIME_VERSION={RUNTIME_VERSION} %env PYTHON_VERSION={PYTHON_VERSION} !dsl-compile --py pipeline/covertype_training_pipeline.py --output covertype_training_pipeline.yaml !head covertype_training_pipeline.yaml PIPELINE_NAME='covertype_continuous_training' !kfp --endpoint $ENDPOINT pipeline upload \ -p $PIPELINE_NAME \ covertype_training_pipeline.yaml !kfp --endpoint $ENDPOINT pipeline list PIPELINE_ID='0918568d-758c-46cf-9752-e04a4403cd84' # TO DO: REPLACE WITH YOUR PIPELINE ID EXPERIMENT_NAME = 'Covertype_Classifier_Training' RUN_ID = 'Run_001' SOURCE_TABLE = 'covertype_dataset.covertype' DATASET_ID = 'splits' EVALUATION_METRIC = 'accuracy' EVALUATION_METRIC_THRESHOLD = '0.69' MODEL_ID = 'covertype_classifier' VERSION_ID = 'v01' REPLACE_EXISTING_VERSION = 'True' GCS_STAGING_PATH = '{}/staging'.format(ARTIFACT_STORE_URI) !kfp --endpoint $ENDPOINT run submit \ -e $EXPERIMENT_NAME \ -r $RUN_ID \ -p $PIPELINE_ID \ project_id=$PROJECT_ID \ gcs_root=$GCS_STAGING_PATH \ region=$REGION \ source_table_name=$SOURCE_TABLE \ dataset_id=$DATASET_ID \ evaluation_metric_name=$EVALUATION_METRIC \ evaluation_metric_threshold=$EVALUATION_METRIC_THRESHOLD \ model_id=$MODEL_ID \ version_id=$VERSION_ID \ replace_existing_version=$REPLACE_EXISTING_VERSION <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise 1 Step2: Exercise 2 Step3: Exercise 3
<ASSISTANT_TASK:> Python Code: import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') %pylab inline #Your code here... file1 = pd.read_json('../../data/data1.json') file2 = pd.read_json('../../data/data2.json') file2 = pd.read_json('../../data/data2.json') file3 = pd.read_json('../../data/data3.json') # add orient=columns file4 = pd.read_json('../../data/data4.json', orient='split') combined = pd.concat([file1, file2.T, file3, file4], ignore_index=True) combined import apache_log_parser from user_agents import parse def parse_ua(line): parsed_data = parse(line) return str(parsed_data).split('/')[1] def parse_ua_2(line): parsed_data = parse(line) return str(parsed_data).split('/')[2] #Read in the log file line_parser = apache_log_parser.make_parser("%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\"") server_log = open("../../data/hackers-access.httpd", "r") parsed_server_data = [] for line in server_log: data = {} data = line_parser(line) parsed_server_data.append( data ) server_df = pd.DataFrame(parsed_server_data) server_df['OS'] = server_df['request_header_user_agent'].apply(parse_ua) server_df['Browser'] = server_df['request_header_user_agent'].apply(parse_ua_2) server_df['OS'].value_counts().head(10) #Apply the functions to the dataframe #Get the top 10 values #Your code here... bots = pd.read_csv('../../data/dailybots.csv') gov_bots = bots[['botfam', 'hosts']][bots['industry'] == 'Government/Politics'] gov_bots.groupby(['botfam']).size() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Prepare non-python dependencies by calling "nbinstall" Step2: Set default options by calling "set_defaults" (optional) Step3: Demo 1 - Rendering a DataFrame returned by Yahoo Finance Step4: BEFORE - Here's IPython's default representation of our 'spy' DataFrame Step5: AFTER - Here's the same 'spy' DataFrame being rendered as a qgrid Step6: Configuring your grid using SlickGrid options Step7: Demo 2 - Rendering a sample DataFrame that includes a MultiIndex Step8: BEFORE - Here's IPython's default representation of our 'multi_index_df' DataFrame Step9: AFTER - Here's the same 'multi_index_df' DataFrame being rendered as a qgrid Step10: API & Usage Step11: Prepare non-python dependencies by calling 'nbinstall'
<ASSISTANT_TASK:> Python Code: import qgrid qgrid.nbinstall(overwrite=True) # copies javascript dependencies to your /nbextensions folder qgrid.set_defaults(remote_js=True, precision=4) import pandas as pd import numpy as np randn = np.random.randn pd.set_option('display.max_rows', 8) from pandas.io.data import get_data_yahoo spy = get_data_yahoo( symbols='SPY', start=pd.Timestamp('2011-01-01'), end=pd.Timestamp('2014-01-01'), adjust_price=True, ) spy qgrid.show_grid(spy) qgrid.show_grid(spy, grid_options={'forceFitColumns': False, 'defaultColumnWidth': 200}) tuples = list(zip(*[['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'], ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']])) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) multi_index_df = pd.DataFrame(randn(8, 2), index=index, columns=['A', 'B']) multi_index_df qgrid.show_grid(multi_index_df) import qgrid qgrid.nbinstall(overwrite=True) # use overwrite=True to keep your /nbextensions folder up to date during development <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Jax Model Conversion For TFLite Step3: Data Preparation Step4: Build the MNIST model with Jax Step5: Train & Evaluate the model Step6: Convert to TFLite model. Step7: Check the Converted TFLite Model Step8: Optimize the Model Step9: Evaluate the Optimized Model Step10: Compare the Quantized Model size
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. !pip install tf-nightly --upgrade !pip install jax --upgrade !pip install jaxlib --upgrade import numpy as np import tensorflow as tf import functools import time import itertools import numpy.random as npr import jax.numpy as jnp from jax import jit, grad, random from jax.experimental import optimizers from jax.experimental import stax def _one_hot(x, k, dtype=np.float32): Create a one-hot encoding of x of size k. return np.array(x[:, None] == np.arange(k), dtype) (train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 train_images = train_images.astype(np.float32) test_images = test_images.astype(np.float32) train_labels = _one_hot(train_labels, 10) test_labels = _one_hot(test_labels, 10) def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -jnp.mean(jnp.sum(preds * targets, axis=1)) def accuracy(params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=1) predicted_class = jnp.argmax(predict(params, inputs), axis=1) return jnp.mean(predicted_class == target_class) init_random_params, predict = stax.serial( stax.Flatten, stax.Dense(1024), stax.Relu, stax.Dense(1024), stax.Relu, stax.Dense(10), stax.LogSoftmax) rng = random.PRNGKey(0) step_size = 0.001 num_epochs = 10 batch_size = 128 momentum_mass = 0.9 num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] batches = data_stream() opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=momentum_mass) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) _, init_params = init_random_params(rng, (-1, 28 * 28)) opt_state = opt_init(init_params) itercount = itertools.count() print("\nStarting training...") for epoch in range(num_epochs): start_time = time.time() for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time params = get_params(opt_state) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) print("Training set accuracy {}".format(train_acc)) print("Test set accuracy {}".format(test_acc)) serving_func = functools.partial(predict, params) x_input = jnp.zeros((1, 28, 28)) converter = tf.lite.TFLiteConverter.experimental_from_jax( [serving_func], [[('input1', x_input)]]) tflite_model = converter.convert() with open('jax_mnist.tflite', 'wb') as f: f.write(tflite_model) expected = serving_func(train_images[0:1]) # Run the model with TensorFlow Lite interpreter = tf.lite.Interpreter(model_content=tflite_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]["index"], train_images[0:1, :, :]) interpreter.invoke() result = interpreter.get_tensor(output_details[0]["index"]) # Assert if the result of TFLite model is consistent with the JAX model. np.testing.assert_almost_equal(expected, result, 1e-5) def representative_dataset(): for i in range(1000): x = train_images[i:i+1] yield [x] converter = tf.lite.TFLiteConverter.experimental_from_jax( [serving_func], [[('x', x_input)]]) tflite_model = converter.convert() converter.optimizations = [tf.lite.Optimize.DEFAULT] converter.representative_dataset = representative_dataset converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] tflite_quant_model = converter.convert() with open('jax_mnist_quant.tflite', 'wb') as f: f.write(tflite_quant_model) expected = serving_func(train_images[0:1]) # Run the model with TensorFlow Lite interpreter = tf.lite.Interpreter(model_content=tflite_quant_model) interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]["index"], train_images[0:1, :, :]) interpreter.invoke() result = interpreter.get_tensor(output_details[0]["index"]) # Assert if the result of TFLite model is consistent with the Jax model. np.testing.assert_almost_equal(expected, result, 1e-5) !du -h jax_mnist.tflite !du -h jax_mnist_quant.tflite <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Download and prepare the dataset Step2: Limit the size of the dataset to experiment faster (optional) Step3: Create a tf.data dataset Step4: Write the encoder and decoder model Step5: Define the optimizer and the loss function Step6: Checkpoints (Object-based saving) Step7: Training Step8: Translate Step9: Restore the latest checkpoint and test
<ASSISTANT_TASK:> Python Code: from __future__ import absolute_import, division, print_function # Import TensorFlow >= 1.10 and enable eager execution import tensorflow as tf tf.enable_eager_execution() import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import unicodedata import re import numpy as np import os import time print(tf.__version__) # Download the file path_to_zip = tf.keras.utils.get_file( 'spa-eng.zip', origin='http://download.tensorflow.org/data/spa-eng.zip', extract=True) path_to_file = os.path.dirname(path_to_zip)+"/spa-eng/spa.txt" # Converts the unicode file to ascii def unicode_to_ascii(s): return ''.join(c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') def preprocess_sentence(w): w = unicode_to_ascii(w.lower().strip()) # creating a space between a word and the punctuation following it # eg: "he is a boy." => "he is a boy ." # Reference:- https://stackoverflow.com/questions/3645931/python-padding-punctuation-with-white-spaces-keeping-punctuation w = re.sub(r"([?.!,¿])", r" \1 ", w) w = re.sub(r'[" "]+', " ", w) # replacing everything with space except (a-z, A-Z, ".", "?", "!", ",") w = re.sub(r"[^a-zA-Z?.!,¿]+", " ", w) w = w.rstrip().strip() # adding a start and an end token to the sentence # so that the model know when to start and stop predicting. w = '<start> ' + w + ' <end>' return w # 1. Remove the accents # 2. Clean the sentences # 3. Return word pairs in the format: [ENGLISH, SPANISH] def create_dataset(path, num_examples): lines = open(path, encoding='UTF-8').read().strip().split('\n') word_pairs = [[preprocess_sentence(w) for w in l.split('\t')] for l in lines[:num_examples]] return word_pairs # This class creates a word -> index mapping (e.g,. "dad" -> 5) and vice-versa # (e.g., 5 -> "dad") for each language, class LanguageIndex(): def __init__(self, lang): self.lang = lang self.word2idx = {} self.idx2word = {} self.vocab = set() self.create_index() def create_index(self): for phrase in self.lang: self.vocab.update(phrase.split(' ')) self.vocab = sorted(self.vocab) self.word2idx['<pad>'] = 0 for index, word in enumerate(self.vocab): self.word2idx[word] = index + 1 for word, index in self.word2idx.items(): self.idx2word[index] = word def max_length(tensor): return max(len(t) for t in tensor) def load_dataset(path, num_examples): # creating cleaned input, output pairs pairs = create_dataset(path, num_examples) # index language using the class defined above inp_lang = LanguageIndex(sp for en, sp in pairs) targ_lang = LanguageIndex(en for en, sp in pairs) # Vectorize the input and target languages # Spanish sentences input_tensor = [[inp_lang.word2idx[s] for s in sp.split(' ')] for en, sp in pairs] # English sentences target_tensor = [[targ_lang.word2idx[s] for s in en.split(' ')] for en, sp in pairs] # Calculate max_length of input and output tensor # Here, we'll set those to the longest sentence in the dataset max_length_inp, max_length_tar = max_length(input_tensor), max_length(target_tensor) # Padding the input and output tensor to the maximum length input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor, maxlen=max_length_inp, padding='post') target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor, maxlen=max_length_tar, padding='post') return input_tensor, target_tensor, inp_lang, targ_lang, max_length_inp, max_length_tar # Try experimenting with the size of that dataset num_examples = 30000 input_tensor, target_tensor, inp_lang, targ_lang, max_length_inp, max_length_targ = load_dataset(path_to_file, num_examples) # Creating training and validation sets using an 80-20 split input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor, target_tensor, test_size=0.2) # Show length len(input_tensor_train), len(target_tensor_train), len(input_tensor_val), len(target_tensor_val) BUFFER_SIZE = len(input_tensor_train) BATCH_SIZE = 64 N_BATCH = BUFFER_SIZE//BATCH_SIZE embedding_dim = 256 units = 1024 vocab_inp_size = len(inp_lang.word2idx) vocab_tar_size = len(targ_lang.word2idx) dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE) dataset = dataset.batch(BATCH_SIZE, drop_remainder=True) def gru(units): # If you have a GPU, we recommend using CuDNNGRU(provides a 3x speedup than GRU) # the code automatically does that. if tf.test.is_gpu_available(): return tf.keras.layers.CuDNNGRU(units, return_sequences=True, return_state=True, recurrent_initializer='glorot_uniform') else: return tf.keras.layers.GRU(units, return_sequences=True, return_state=True, recurrent_activation='sigmoid', recurrent_initializer='glorot_uniform') class Encoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, enc_units, batch_sz): super(Encoder, self).__init__() self.batch_sz = batch_sz self.enc_units = enc_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = gru(self.enc_units) def call(self, x, hidden): x = self.embedding(x) output, state = self.gru(x, initial_state = hidden) return output, state def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.enc_units)) class Decoder(tf.keras.Model): def __init__(self, vocab_size, embedding_dim, dec_units, batch_sz): super(Decoder, self).__init__() self.batch_sz = batch_sz self.dec_units = dec_units self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim) self.gru = gru(self.dec_units) self.fc = tf.keras.layers.Dense(vocab_size) # used for attention self.W1 = tf.keras.layers.Dense(self.dec_units) self.W2 = tf.keras.layers.Dense(self.dec_units) self.V = tf.keras.layers.Dense(1) def call(self, x, hidden, enc_output): # enc_output shape == (batch_size, max_length, hidden_size) # hidden shape == (batch_size, hidden size) # hidden_with_time_axis shape == (batch_size, 1, hidden size) # we are doing this to perform addition to calculate the score hidden_with_time_axis = tf.expand_dims(hidden, 1) # score shape == (batch_size, max_length, 1) # we get 1 at the last axis because we are applying tanh(FC(EO) + FC(H)) to self.V score = self.V(tf.nn.tanh(self.W1(enc_output) + self.W2(hidden_with_time_axis))) # attention_weights shape == (batch_size, max_length, 1) attention_weights = tf.nn.softmax(score, axis=1) # context_vector shape after sum == (batch_size, hidden_size) context_vector = attention_weights * enc_output context_vector = tf.reduce_sum(context_vector, axis=1) # x shape after passing through embedding == (batch_size, 1, embedding_dim) x = self.embedding(x) # x shape after concatenation == (batch_size, 1, embedding_dim + hidden_size) x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1) # passing the concatenated vector to the GRU output, state = self.gru(x) # output shape == (batch_size * 1, hidden_size) output = tf.reshape(output, (-1, output.shape[2])) # output shape == (batch_size * 1, vocab) x = self.fc(output) return x, state, attention_weights def initialize_hidden_state(self): return tf.zeros((self.batch_sz, self.dec_units)) encoder = Encoder(vocab_inp_size, embedding_dim, units, BATCH_SIZE) decoder = Decoder(vocab_tar_size, embedding_dim, units, BATCH_SIZE) optimizer = tf.train.AdamOptimizer() def loss_function(real, pred): mask = 1 - np.equal(real, 0) loss_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=real, logits=pred) * mask return tf.reduce_mean(loss_) checkpoint_dir = './training_checkpoints' checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt") checkpoint = tf.train.Checkpoint(optimizer=optimizer, encoder=encoder, decoder=decoder) EPOCHS = 10 for epoch in range(EPOCHS): start = time.time() hidden = encoder.initialize_hidden_state() total_loss = 0 for (batch, (inp, targ)) in enumerate(dataset): loss = 0 with tf.GradientTape() as tape: enc_output, enc_hidden = encoder(inp, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([targ_lang.word2idx['<start>']] * BATCH_SIZE, 1) # Teacher forcing - feeding the target as the next input for t in range(1, targ.shape[1]): # passing enc_output to the decoder predictions, dec_hidden, _ = decoder(dec_input, dec_hidden, enc_output) loss += loss_function(targ[:, t], predictions) # using teacher forcing dec_input = tf.expand_dims(targ[:, t], 1) batch_loss = (loss / int(targ.shape[1])) total_loss += batch_loss variables = encoder.variables + decoder.variables gradients = tape.gradient(loss, variables) optimizer.apply_gradients(zip(gradients, variables)) if batch % 100 == 0: print('Epoch {} Batch {} Loss {:.4f}'.format(epoch + 1, batch, batch_loss.numpy())) # saving (checkpoint) the model every 2 epochs if (epoch + 1) % 2 == 0: checkpoint.save(file_prefix = checkpoint_prefix) print('Epoch {} Loss {:.4f}'.format(epoch + 1, total_loss / N_BATCH)) print('Time taken for 1 epoch {} sec\n'.format(time.time() - start)) def evaluate(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ): attention_plot = np.zeros((max_length_targ, max_length_inp)) sentence = preprocess_sentence(sentence) inputs = [inp_lang.word2idx[i] for i in sentence.split(' ')] inputs = tf.keras.preprocessing.sequence.pad_sequences([inputs], maxlen=max_length_inp, padding='post') inputs = tf.convert_to_tensor(inputs) result = '' hidden = [tf.zeros((1, units))] enc_out, enc_hidden = encoder(inputs, hidden) dec_hidden = enc_hidden dec_input = tf.expand_dims([targ_lang.word2idx['<start>']], 0) for t in range(max_length_targ): predictions, dec_hidden, attention_weights = decoder(dec_input, dec_hidden, enc_out) # storing the attention weigths to plot later on attention_weights = tf.reshape(attention_weights, (-1, )) attention_plot[t] = attention_weights.numpy() predicted_id = tf.argmax(predictions[0]).numpy() result += targ_lang.idx2word[predicted_id] + ' ' if targ_lang.idx2word[predicted_id] == '<end>': return result, sentence, attention_plot # the predicted ID is fed back into the model dec_input = tf.expand_dims([predicted_id], 0) return result, sentence, attention_plot # function for plotting the attention weights def plot_attention(attention, sentence, predicted_sentence): fig = plt.figure(figsize=(10,10)) ax = fig.add_subplot(1, 1, 1) ax.matshow(attention, cmap='viridis') fontdict = {'fontsize': 14} ax.set_xticklabels([''] + sentence, fontdict=fontdict, rotation=90) ax.set_yticklabels([''] + predicted_sentence, fontdict=fontdict) plt.show() def translate(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ): result, sentence, attention_plot = evaluate(sentence, encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) print('Input: {}'.format(sentence)) print('Predicted translation: {}'.format(result)) attention_plot = attention_plot[:len(result.split(' ')), :len(sentence.split(' '))] plot_attention(attention_plot, sentence.split(' '), result.split(' ')) # restoring the latest checkpoint in checkpoint_dir checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir)) translate(u'hace mucho frio aqui.', encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) translate(u'esta es mi vida.', encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) translate(u'todavia estan en casa?', encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) # wrong translation translate(u'trata de averiguarlo.', encoder, decoder, inp_lang, targ_lang, max_length_inp, max_length_targ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: This is just a simple sample to show how Bollinger Bands work. Step2: What is a 'Bollinger Band®' Step4: In this example of Bollinger Bands®, the price of the stock is bracketed by an upper and lower band along with a 20-day simple moving average. Because standard deviation is a measure of volatility, when the markets become more volatile, the bands widen; during less volatile periods, the bands contract.
<ASSISTANT_TASK:> Python Code: import quantiacsToolbox import matplotlib.pyplot as plt import numpy as np import pandas as pd %matplotlib inline F_AD = pd.read_csv('./tickerData/F_AD.txt') CLOSE = np.array(F_AD.loc[:252-1, [' CLOSE']]) plt.plot(CLOSE) def bollingerBands(a, n=20): sma = np.nansum(a[-n:]) / n std = np.std(a[-n:]) return sma, sma + 2 * std, sma - 2 * std upperBand, lowerBand = np.zeros(252 - 20 + 1), np.zeros(252 - 20 + 1) for i in range(252 - 20 + 1): _, upperBand[i], lowerBand[i] = bollingerBands(CLOSE[i:i+20]) plt.plot(upperBand) plt.plot(lowerBand) plt.plot(CLOSE[20:]) class myStrategy(object): def myTradingSystem(self, DATE, OPEN, HIGH, LOW, CLOSE, VOL, OI, P, R, RINFO, exposure, equity, settings): def bollingerBands(a, n=20): sma = np.nansum(a[-n:]) / n std = np.std(a[-n:], ddof=1) return sma, sma + 2 * std, sma - 2 * std nMarkets = len(settings['markets']) threshold = settings['threshold'] pos = np.zeros((1, nMarkets), dtype=np.float) for market in range(nMarkets): sma, upperBand, lowerBand = bollingerBands(CLOSE[:, market]) currentPrice = CLOSE[-1, market] if currentPrice >= upperBand + (upperBand - lowerBand) * threshold: pos[0, market] = -1 elif currentPrice <= lowerBand - (upperBand - lowerBand) * threshold: pos[0, market] = 1 return pos, settings def mySettings(self): Define your trading system settings here settings = {} # Futures Contracts settings['markets'] = ['CASH', 'F_AD', 'F_BO', 'F_BP', 'F_C', 'F_CC', 'F_CD', 'F_CL', 'F_CT', 'F_DX', 'F_EC', 'F_ED', 'F_ES', 'F_FC', 'F_FV', 'F_GC', 'F_HG', 'F_HO', 'F_JY', 'F_KC', 'F_LB', 'F_LC', 'F_LN', 'F_MD', 'F_MP', 'F_NG', 'F_NQ', 'F_NR', 'F_O', 'F_OJ', 'F_PA', 'F_PL', 'F_RB', 'F_RU', 'F_S', 'F_SB', 'F_SF', 'F_SI', 'F_SM', 'F_TU', 'F_TY', 'F_US', 'F_W', 'F_XX', 'F_YM'] settings['beginInSample'] = '19900101' settings['endInSample'] = '20170522' settings['lookback'] = 20 settings['budget'] = 10 ** 6 settings['slippage'] = 0.05 settings['threshold'] = 0.4 return settings result = quantiacsToolbox.runts(myStrategy) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Creation of Dictionary Step3: Recalibration of Dictionary
<ASSISTANT_TASK:> Python Code: file_path = '../data/2011.0.00419.S/sg_ouss_id/group_ouss_id/member_ouss_2013-03-06_id/product/IRAS16547-4247_Jet_CH3OH7-6.clean.fits' noise_pixel = (15, 4) train_pixels = [(133, 135),(134, 135),(133, 136),(134, 136)] img = fits.open(file_path) meta = img[0].data hdr = img[0].header # V axis naxisv = hdr['NAXIS3'] onevpix = hdr['CDELT3']*0.000001 v0 = hdr['CRVAL3']*0.000001 v0pix = int(hdr['CRPIX3']) vaxis = onevpix * (np.arange(naxisv)+1-v0pix) + v0 values = meta[0, :, train_pixels[0][0], train_pixels[0][1]] - np.mean(meta[0, :, train_pixels[0][0], train_pixels[0][1]]) values = values/np.max(values) plt.plot(vaxis, values) plt.xlim(np.min(vaxis), np.max(vaxis)) plt.ylim(-1, 1) gca().xaxis.set_major_formatter(FormatStrFormatter('%d')) noise = meta[0, :, noise_pixel[0], noise_pixel[1]] - np.mean(meta[0, :, noise_pixel[0], noise_pixel[1]]) noise = noise/np.max(noise) plt.plot(vaxis, noise) plt.ylim(-1, 1) plt.xlim(np.min(vaxis), np.max(vaxis)) gca().xaxis.set_major_formatter(FormatStrFormatter('%d')) cube_params = { 'freq' : vaxis[naxisv/2], 'alpha' : 0, 'delta' : 0, 'spe_bw' : naxisv*onevpix, 'spe_res' : onevpix*v0pix, 's_f' : 8, 's_a' : 0} dictionary = gen_all_words(cube_params, True) prediction = pd.DataFrame([]) for train_pixel in train_pixels: dictionary_recal, detected_peaks = recal_words(file_path, dictionary, cube_params, train_pixel, noise_pixel) X = get_values_filtered_normalized(file_path, train_pixel, cube_params) y_train = get_fortran_array(np.asmatrix(X)) dictionary_recal_fa = np.asfortranarray(dictionary_recal, dtype= np.double) lambda_param = 0 for idx in range(0, len(detected_peaks)): if detected_peaks[idx] != 0: lambda_param += 1 param = { 'lambda1' : lambda_param, # 'L': 1, 'pos' : True, 'mode' : 0, 'ols' : True, 'numThreads' : -1} alpha = spams.lasso(y_train, dictionary_recal_fa, **param).toarray() total = np.inner(dictionary_recal_fa, alpha.T) for i in range(0, len(alpha)): iso_col = dictionary_recal.columns[i] if(not prediction.columns.isin([iso_col]).any()): prediction[iso_col] = alpha[i] else: prediction[iso_col] = prediction[iso_col]*alpha[i] for p in prediction.columns: if(prediction[p][0] != 0): print(prediction[p]) latexify(8) # Step 1: Read Cube ax = plt.subplot(6, 1, 1) data = get_data_from_fits(file_path) y = data[0, :, train_pixel[0], train_pixel[1]] plt.xticks([]) plt.plot(vaxis, y) lines = get_lines_from_fits(file_path) for line in lines: # Shows lines really present isotope_frequency = int(line[1]) isotope_name = line[0] + "-f" + str(line[1]) plt.axvline(x=isotope_frequency, ymin=0, ymax= 3, color='g') # 2. Normalize, filter dada ax = plt.subplot(6, 1, 2) plt.ylim(ymin =0,ymax = 1.15) y = get_values_filtered_normalized(file_path, train_pixel, cube_params) plt.xticks([]) plt.plot(vaxis, y) # 3. Possible Words ax = plt.subplot(6, 1, 3) plt.ylim(ymin =0,ymax = 1.15) plt.xticks([]) plt.plot(vaxis, dictionary) # 4. Detect Lines ax = plt.subplot(6, 1, 4) plt.ylim(ymin =0,ymax = 1.15) plt.plot(vaxis, y) plt.xticks([]) plt.ylabel("Temperature") for idx in range(0, len(detected_peaks)): if detected_peaks[idx] != 0: plt.axvline(x=vaxis[idx], ymin=0, ymax= 1, color='r') # 6. Recalibrate Dictionary ax = plt.subplot(6, 1, 5) plt.ylim(ymin =0,ymax = 1.15) plt.plot(vaxis, dictionary_recal_fa) plt.xticks([]) # 6. Recover Signal ax = plt.subplot(6, 1, 6) plt.ylim(ymin =0,ymax = 1.15) plt.plot(vaxis, total) plt.xlabel("Frequency [MHz]") gca().xaxis.set_major_formatter(FormatStrFormatter('%d')) def latexify(fig_width=None, fig_height=None, columns=1): Set up matplotlib's RC params for LaTeX plotting. Call this before plotting a figure. Parameters ---------- fig_width : float, optional, inches fig_height : float, optional, inches columns : {1, 2} # code adapted from http://www.scipy.org/Cookbook/Matplotlib/LaTeX_Examples # Width and max height in inches for IEEE journals taken from # computer.org/cms/Computer.org/Journal%20templates/transactions_art_guide.pdf assert(columns in [1,2]) if fig_width is None: fig_width = 4.89 if columns==1 else 6.9 # width in inches if fig_height is None: golden_mean = (sqrt(5)-1.0)/2.0 # Aesthetic ratio fig_height = fig_width*golden_mean # height in inches MAX_HEIGHT_INCHES = 24.0 if fig_height > MAX_HEIGHT_INCHES: print("WARNING: fig_height too large:" + fig_height + "so will reduce to" + MAX_HEIGHT_INCHES + "inches.") fig_height = MAX_HEIGHT_INCHES params = {'backend': 'ps', 'text.latex.preamble': ['\usepackage{gensymb}'], 'axes.labelsize': 8, # fontsize for x and y labels (was 10) 'axes.titlesize': 8, 'text.fontsize': 8, # was 10 'legend.fontsize': 8, # was 10 'xtick.labelsize': 10, 'ytick.labelsize': 8, 'text.usetex': True, 'figure.figsize': [fig_width,fig_height], 'font.family': 'serif' } matplotlib.rcParams.update(params) def format_axes(ax): for spine in ['top', 'right']: ax.spines[spine].set_visible(False) for spine in ['left', 'bottom']: ax.spines[spine].set_color(SPINE_COLOR) ax.spines[spine].set_linewidth(0.5) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') for axis in [ax.xaxis, ax.yaxis]: axis.set_tick_params(direction='out', color=SPINE_COLOR) return ax for i in range(0, len((alpha > 0))): if((alpha > 0)[i]): print(dictionary_recal.columns[i]) print(prediction) for i in range(0, len(dictionary.index)): print(calculate_probability(alpha, dictionary.index[i], dictionary_recal)) print(dictionary.index[i]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Delta hedging Step2: Construct efficient frontier based on return in infinitesimal future time $\mathrm{d}t$ Step3: The most risk averse portfolio is exactly the delta hedging portfolio.
<ASSISTANT_TASK:> Python Code: from scipy.stats import norm import numpy as np def bs_put(df, fwd, t, vol, k): log_fwd_moneyness = np.log(fwd/k) d1 = (log_fwd_moneyness + vol**2 /2.0 * t) / vol / np.sqrt(t) d2 = d1 - vol * np.sqrt(t) return df * (-norm.cdf(-d1) * fwd + norm.cdf(-d2) * k), norm.cdf(-d1) vol = 0.3 s0 = 10.0 k = 10.0 t = 2.0 r = 0.2 # riskless return put_now, hedge = bs_put(np.exp(-r*t), s0*np.exp(r*t), t, vol, k) w_stock_delta_hedging = s0*hedge/(s0*hedge+put_now) w_put_delta_hedging = 1.0 - w_stock_delta_hedging print("Weight of stock in delta hedging portfolio: "+str(w_stock_delta_hedging)) print("Weight of put option in delta hedging portfolio: " + str(w_put_delta_hedging)) from pymcef import SimpleEFp, RiskMeasure dt = 0.001 riskless_reward = np.exp(r * dt) - 1.0 reward_portfolio = [] stock_ws_portfolio = [] put_ws_portfolio = [] r_ps = [-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3]# r under physical measure for r_p in r_ps: Zs = norm.rvs(size=50000) # number of samples in MC simulation S = s0 * np.exp((r_p - vol** 2 / 2.0) * dt + vol* np.sqrt(dt) * Zs) Fwd = S * np.exp(r * (t-dt)) puts, _ = bs_put(np.exp(-r*(t-dt)), Fwd, t-dt, vol, k) return_s = S/s0 - 1 return_put = puts/put_now - 1 returns = np.vstack((return_s, return_put)) sol = SimpleEFp(training_set = returns, risk_measure = RiskMeasure.AbsoluteSemiDeviation) prt = sol.frontier_in_sample[-1] # most risk averse portfolio reward_portfolio.append(prt['reward']) stock_ws_portfolio.append(prt['weight'][0]) put_ws_portfolio.append(prt['weight'][1]) %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt fig = plt.figure(figsize=(9, 4)) # return of portfolio ax = fig.add_subplot(1,2,1) ax.plot(r_ps, reward_portfolio, 'og', label='return of min-risk portfolio') ax.axhline(y=riskless_reward, color='r', linestyle='-', label='riskless return') ax.set_ylim((0, riskless_reward*1.5)) ax.set_xlabel('return rate (r) under physical measure') ax.set_ylabel('return of investment') ax.legend(loc='best') # weight of the stock and put ax = fig.add_subplot(1,2,2) ax.plot(r_ps, stock_ws_portfolio, 'ob', label='stock weight in min-risk portfolio') ax.plot(r_ps, put_ws_portfolio, 'oy', label='put weight in min-risk portfolio') ax.set_xlabel('return rate (r) under physical measure') ax.axhline(y=w_stock_delta_hedging, color='r', linestyle='-', label='stock weight in delta hedging') ax.axhline(y=w_put_delta_hedging, color='c', linestyle='-', label='put weight in delta hedging') ax.set_ylim((0, w_stock_delta_hedging*1.5)) ax.set_ylabel('weight in portfolio') ax.legend(loc='best') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: quickly add lots of similar procedures Step2: Error handling Step3: Advance usage
<ASSISTANT_TASK:> Python Code: import os import sys import ruamel.yaml as yaml from ddf_utils.chef.api import Chef # at the beginning, initial the chef chef = Chef() # adding configs and metadata(to the info section) (chef.add_config(ddf_dir=os.path.expanduser('~/src/work/Gapminder/datasets')) .add_metadata(id='test_dataset', base=['ddf--transpint--corrupton'])) # adding ingredient, parameters are just like in recipe i = ''' id: cpi-datapoints dataset: ddf--transpint--corrupton key: country, year value: "*" ''' d = yaml.round_trip_load(i) chef.add_ingredient(**d) # add an other ingredient chef.add_ingredient(id='bp-datapoints', dataset='ddf--bp--energy', key='geo, year', value='*') # add procedures, parameters are same as in recipe chef.add_procedure(collection='datapoints', # which part of cooking section the procedure is in procedure='translate_header', ingredients=['bp-datapoints'], result='bp-datapoints-translate', options={'dictionary': {'geo': 'country'}}) # add an other procedure chef.add_procedure(collection='datapoints', procedure='merge', ingredients=['bp-datapoints-translate', 'cpi-datapoints'], result='res') # you can print the recipe in yaml format a = chef.to_recipe() # also in graph chef.to_graph() # to run the recipe and get the output: res = chef.run() res res[0].get_data().keys() res[0].get_data()['biofuels_production_kboed'].sample(5) res[0].get_data()['cpi'].sample(5) # we can also create a Chef instance from existing recipes recipe_file = '../tests/recipes_pass/test_flatten.yml' print(open(os.path.abspath(recipe_file)).read()) chef = Chef.from_recipe(os.path.expandvars(recipe_file), ddf_dir=os.path.expanduser('/Users/semio/src/work/Gapminder/libs/ddf_utils/tests/datasets')) chef.to_recipe() res = chef.run() res[0].get_data().keys() res[0].get_data()['agriculture_percentage_f'] from ddf_utils.chef.helpers import gen_sym chef = Chef() chef.add_config(ddf_dir=os.path.expanduser('~/src/work/Gapminder/datasets')) chef.add_ingredient(id='population_by_age_dps', dataset='ddf--unpop--wpp_population_semio', key='country_code,year,age', value=['population']) collection = 'datapoints' groups = [list(map(str, range(0, 5))), list(map(str, range(5, 10))), list(map(str, range(10, 20))) ] names = ['population_0_4', 'population_5_9', 'population_10_19'] ingredients_0 = ['population_by_age_dps'] to_merge = [] for g, n in zip(groups, names): procedure = 'filter_row' options = { 'filters': { 'population': { 'age': g}}} result = gen_sym('filter_row', ingredients_0, options) chef.add_procedure(collection=collection, procedure=procedure, ingredients=ingredients_0, options=options, result=result ) ingredients = [result] procedure = 'groupby' options = { 'groupby': ['country_code', 'year'], 'aggregate': {'population': 'sum'} } result = gen_sym(procedure, ingredients, options) chef.add_procedure(collection=collection, procedure=procedure, ingredients=ingredients, options=options, result=result ) ingredients = [result] procedure = 'translate_header' options = { 'dictionary': { 'population': n } } result = gen_sym(procedure, ingredients, options) chef.add_procedure(collection=collection, procedure=procedure, ingredients=ingredients, options=options, result=result ) to_merge.append(result) chef.add_procedure(collection=collection, procedure='merge', ingredients=to_merge, result='result' ) chef.to_recipe() chef.to_graph() res = chef.run() res res[0].get_data().keys() chef = Chef() i = ''' id: cpi-datapoints dataset: ddf--transpint--corrupton key: country, year value: "*" snieot: 'soneot' ''' d = yaml.round_trip_load(i) chef.add_ingredient(**d) i = ''' id: cpi-datapoints_ dataset: ddf--transpint--corrupton oh_my_interesting_key: country, year # error value: "*" ''' d = yaml.round_trip_load(i) try: chef.add_ingredient(**d) except KeyError as e: print(str(e)) i = ''' procedure: my_new_procedure ingredients: - testing options: opt: val result: result ''' d = yaml.round_trip_load(i) chef.add_procedure('datapoints', **d) from ddf_utils.chef.ingredient import Ingredient, ProcedureResult def multiply_1000(chef, ingredients, result, **options): ingredients = [chef.dag.get_node(x) for x in ingredients] ingredient = ingredients[0].evaluate() new_data = dict() for k, df in ingredient.get_data().items(): df_ = df.copy() df_[k] = df_[k] * 1000 new_data[k] = df_ return ProcedureResult(chef, result, ingredient.key, new_data) chef = Chef() chef.add_config(ddf_dir=os.path.expanduser('~/src/work/Gapminder/datasets')) i = ''' id: cpi-datapoints dataset: ddf--transpint--corrupton key: country, year value: "*" ''' d = yaml.round_trip_load(i) chef.add_ingredient(**d) chef.register_procedure(multiply_1000) chef.add_procedure(collection='datapoints', procedure='multiply_1000', result='res', ingredients=['cpi-datapoints'] ) res = chef.run() res[0].get_data()['cpi'].head(5) chef.ingredients chef.ingredients[0].get_data()['cpi'].head() # the original chef.to_graph() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Make a grid and set boundary conditions. Step2: Here we make the initial grid of elevation of zeros with a very small amount of noise to make a more pleasing network. Step3: Set parameters related to time. Step4: Set parameters for incision and intializing all of the process components that do the work. We also initialize tools for quantifying the landscape. Step5: Initialize rock uplift rate. This will need to be changed later. Step6: Now for the code loop. Step7: Plot the topography. Step8: Plot the slope and area data at each point on the landscape (in log-log space). We will only plot the core nodes because the boundary nodes have slopes that are influenced by the boundary conditions. Step9: It is slightly easier to interpret slope-area data when we look at a single channel, rather than the entire landscape. Below we plot the profile and slope-area data for the three largest channels on the landscape. Step10: The chi index is a useful way to quantitatively interpret fluvial channels. Below we plot the chi index in the three largest channels and also a chi map across the entire landscape. Step11: The channel steepness index is another useful index to quantify fluvial channels. Below we plot the steepness index in the same three largest channels, and also plot steepness index across the grid. Step12: If you have a grid that you want to export, uncomment and edit the appropriate lines below and run the code block. Step13: After running every code block once, has the landscape reached steady state? Answer
<ASSISTANT_TASK:> Python Code: # Code block 1 import copy import numpy as np from matplotlib import pyplot as plt from landlab import RasterModelGrid, imshow_grid from landlab.components import ( ChannelProfiler, ChiFinder, FlowAccumulator, SteepnessFinder, StreamPowerEroder, ) from landlab.io import write_esri_ascii # Code Block 2 number_of_rows = 50 # number of raster cells in vertical direction (y) number_of_columns = 100 # number of raster cells in horizontal direction (x) dxy = 200 # side length of a raster model cell, or resolution [m] # Below is a raster (square cells) grid, with equal width and height mg1 = RasterModelGrid((number_of_rows, number_of_columns), dxy) # Set boundary conditions - only the south side of the grid is open. # Boolean parameters are sent to function in order of # east, north, west, south. mg1.set_closed_boundaries_at_grid_edges(True, True, True, False) # Code Block 3 np.random.seed(35) # seed set so our figures are reproducible mg1_noise = ( np.random.rand(mg1.number_of_nodes) / 1000.0 ) # intial noise on elevation gri # set up the elevation on the grid z1 = mg1.add_zeros("topographic__elevation", at="node") z1 += mg1_noise # Code Block 4 tmax = 5e5 # time for the model to run [yr] (Original value was 5E5 yr) dt = 1000 # time step [yr] (Original value was 100 yr) total_time = 0 # amount of time the landscape has evolved [yr] # total_time will increase as you keep running the code. t = np.arange(0, tmax, dt) # each of the time steps that the code will run # Code Block 5 # Original K_sp value is 1e-5 K_sp = 1.0e-5 # units vary depending on m_sp and n_sp m_sp = 0.5 # exponent on drainage area in stream power equation n_sp = 1.0 # exponent on slope in stream power equation frr = FlowAccumulator(mg1, flow_director="FlowDirectorD8") # intializing flow routing spr = StreamPowerEroder( mg1, K_sp=K_sp, m_sp=m_sp, n_sp=n_sp, threshold_sp=0.0 ) # initializing stream power incision theta = m_sp / n_sp # initialize the component that will calculate channel steepness sf = SteepnessFinder(mg1, reference_concavity=theta, min_drainage_area=1000.0) # initialize the component that will calculate the chi index cf = ChiFinder( mg1, min_drainage_area=1000.0, reference_concavity=theta, use_true_dx=True ) # Code Block 6 # uplift_rate [m/yr] (Original value is 0.0001 m/yr) uplift_rate = np.ones(mg1.number_of_nodes) * 0.0001 # Code Block 7 for ti in t: z1[mg1.core_nodes] += uplift_rate[mg1.core_nodes] * dt # uplift the landscape frr.run_one_step() # route flow spr.run_one_step(dt) # fluvial incision total_time += dt # update time keeper print(total_time) # Code Block 8 imshow_grid( mg1, "topographic__elevation", grid_units=("m", "m"), var_name="Elevation (m)" ) title_text = f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m" plt.title(title_text) max_elev = np.max(z1) print("Maximum elevation is ", np.max(z1)) # Code Block 9 plt.loglog( mg1.at_node["drainage_area"][mg1.core_nodes], mg1.at_node["topographic__steepest_slope"][mg1.core_nodes], "b.", ) plt.ylabel("Topographic slope") plt.xlabel("Drainage area (m^2)") title_text = f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m" plt.title(title_text) # Code Block 10 # profile the largest channels, set initially to find the mainstem channel in the three biggest watersheds # you can change the number of watersheds, or choose to plot all the channel segments in the watershed that # have drainage area below the threshold (here we have set the threshold to the area of a grid cell). prf = ChannelProfiler( mg1, number_of_watersheds=3, main_channel_only=True, minimum_channel_threshold=dxy ** 2, ) prf.run_one_step() # plot the elevation as a function of distance upstream plt.figure(1) title_text = f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m" prf.plot_profiles( xlabel="distance upstream (m)", ylabel="elevation (m)", title=title_text ) # plot the location of the channels in map view plt.figure(2) prf.plot_profiles_in_map_view() # slope-area data in just the profiled channels plt.figure(3) for i, outlet_id in enumerate(prf.data_structure): for j, segment_id in enumerate(prf.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] color = segment["color"] plt.loglog( mg1.at_node["drainage_area"][profile_ids], mg1.at_node["topographic__steepest_slope"][profile_ids], ".", color=color, label=label, ) plt.legend(loc="lower left") plt.xlabel("drainage area (m^2)") plt.ylabel("channel slope [m/m]") title_text = f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m" plt.title(title_text) # Code Block 11 # calculate the chi index cf.calculate_chi() # chi-elevation plots in the profiled channels plt.figure(4) for i, outlet_id in enumerate(prf.data_structure): for j, segment_id in enumerate(prf.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] color = segment["color"] plt.plot( mg1.at_node["channel__chi_index"][profile_ids], mg1.at_node["topographic__elevation"][profile_ids], color=color, label=label, ) plt.xlabel("chi index (m)") plt.ylabel("elevation (m)") plt.legend(loc="lower right") title_text = ( f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m; concavity={theta}" ) plt.title(title_text) # chi map plt.figure(5) imshow_grid( mg1, "channel__chi_index", grid_units=("m", "m"), var_name="Chi index (m)", cmap="jet", ) title_text = ( f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m; concavity={theta}" ) plt.title(title_text) # Code Block 12 # calculate channel steepness sf.calculate_steepnesses() # plots of steepnes vs. distance upstream in the profiled channels plt.figure(6) for i, outlet_id in enumerate(prf.data_structure): for j, segment_id in enumerate(prf.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] distance_upstream = segment["distances"] color = segment["color"] plt.plot( distance_upstream, mg1.at_node["channel__steepness_index"][profile_ids], "x", color=color, label=label, ) plt.xlabel("distance upstream (m)") plt.ylabel("steepness index") plt.legend(loc="upper left") plt.title(f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m; concavity={theta}") # channel steepness map plt.figure(7) imshow_grid( mg1, "channel__steepness_index", grid_units=("m", "m"), var_name="Steepness index ", cmap="jet", ) title_text = ( "$K_{sp}$=" + str(K_sp) + "; $time$=" + str(total_time) + "yr; $dx$=" + str(dxy) + "m" + "; concavity=" + str(theta) ) plt.title(f"$K_{{sp}}$={K_sp}; $time$={total_time} yr; $dx$={dxy} m; concavity={theta}") # Code Block 13 ## Below has the name of the file that data will be written to. ## You need to change the name of the file every time that you want ## to write data, otherwise you will get an error. ## This will write to the directory that you are running the code in. # write_file_name = 'data_file.txt' ## Below is writing elevation data in the ESRI ascii format so that it can ## easily be read into Arc GIS or back into Landlab. # write_esri_ascii(write_file_name, mg1, 'topographic__elevation') # Code Block 14 number_of_rows = 50 # number of raster cells in vertical direction (y) number_of_columns = 100 # number of raster cells in horizontal direction (x) dxy2 = 200 # side length of a raster model cell, or resolution [m] # Below is a raster (square cells) grid, with equal width and height mg2 = RasterModelGrid((number_of_rows, number_of_columns), dxy2) # Set boundary conditions - only the south side of the grid is open. # Boolean parameters are sent to function in order of # east, north, west, south. mg2.set_closed_boundaries_at_grid_edges(True, True, True, False) z2 = copy.copy(z1) # initialize the elevations with the steady state # topography produced for question 1 z2 = mg2.add_field("topographic__elevation", z2, at="node") # K_sp value for base landscape is 1e-5 K_sp2 = 1e-5 # units vary depending on m_sp and n_sp m_sp2 = 0.5 # exponent on drainage area in stream power equation n_sp2 = 1.0 # exponent on slope in stream power equation frr2 = FlowAccumulator(mg2, flow_director="FlowDirectorD8") # intializing flow routing spr2 = StreamPowerEroder( mg2, K_sp=K_sp2, m_sp=m_sp2, n_sp=n_sp2, threshold_sp=0.0 ) # initializing stream power incision theta2 = m_sp2 / n_sp2 # initialize the component that will calculate channel steepness sf2 = SteepnessFinder(mg2, reference_concavity=theta2, min_drainage_area=1000.0) # initialize the component that will calculate the chi index cf2 = ChiFinder( mg2, min_drainage_area=1000.0, reference_concavity=theta2, use_true_dx=True ) # Code Block 15 tmax = 1e5 # time for the model to run [yr] (Original value was 5E5 yr) dt = 500 # time step [yr] (Original value was 500 yr) total_time = 0 # amount of time the landscape has evolved [yr] # total_time will increase as you keep running the code. t = np.arange(0, tmax, dt) # each of the time steps that the code will run # Code Block 16 # uplift_rate [m/yr] (value was 0.0001 m/yr for base landscape) uplift_rate = np.ones(mg2.number_of_nodes) * 0.0001 ## If you want to add a one-time event that uplifts only part of the ## landscape, uncomment the 3 lines below # fault_location = 4000 # [m] # uplift_amount = 10 # [m] # z2[np.nonzero(mg2.node_y>fault_location)] += uplift_amount ## IMPORTANT! To use the below fault generator, comment the one-time ## uplift event above if it isn't already commented out. ## Code below creates a fault horizontally across the grid. ## Uplift rates are greater where y values > fault location. ## To use, uncomment the 5 code lines below and edit to your values # fault_location = 4000 # [m] # low_uplift_rate = 0.0001 # [m/yr] # high_uplift_rate = 0.0004 # [m/yr] # uplift_rate[np.nonzero(mg2.node_y<fault_location)] = low_uplift_rate # uplift_rate[np.nonzero(mg2.node_y>fault_location)] = high_uplift_rate ## IMPORTANT! To use below rock uplift gradient, comment the two ## uplift options above if they aren't already commented out. ## If you want a linear gradient in uplift rate ## (increasing uplift into the range), ## uncomment the 4 code lines below and edit to your values. # low_uplift_rate = 0.0001 # [m/yr] # high_uplift_rate = 0.0004 # [m/yr] ## below is uplift gradient per node row index, NOT row value in meters # uplift_rate_gradient = (high_uplift_rate - low_uplift_rate)/(number_of_rows-3) # uplift_rate = low_uplift_rate + ((mg2.node_y / dxy)-1) * uplift_rate_gradient # Code Block 17 for ti in t: z2[mg2.core_nodes] += uplift_rate[mg2.core_nodes] * dt # uplift the landscape frr2.run_one_step() # route flow spr2.run_one_step(dt) # fluvial incision total_time += dt # update time keeper print(total_time) # Code Block 18 # Plot topography plt.figure(8) imshow_grid( mg2, "topographic__elevation", grid_units=("m", "m"), var_name="Elevation (m)" ) plt.title(f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m") max_elev = np.max(z2) print("Maximum elevation is ", np.max(z2)) # Code Block 19 # Plot Channel Profiles and slope-area data along the channels prf2 = ChannelProfiler( mg2, number_of_watersheds=3, main_channel_only=True, minimum_channel_threshold=dxy ** 2, ) prf2.run_one_step() # plot the elevation as a function of distance upstream plt.figure(9) title_text = f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy} m" prf2.plot_profiles( xlabel="distance upstream (m)", ylabel="elevation (m)", title=title_text ) # plot the location of the channels in map view plt.figure(10) prf2.plot_profiles_in_map_view() # slope-area data in just the profiled channels plt.figure(11) for i, outlet_id in enumerate(prf2.data_structure): for j, segment_id in enumerate(prf2.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf2.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] color = segment["color"] plt.loglog( mg2.at_node["drainage_area"][profile_ids], mg2.at_node["topographic__steepest_slope"][profile_ids], ".", color=color, label=label, ) plt.legend(loc="lower left") plt.xlabel("drainage area (m^2)") plt.ylabel("channel slope [m/m]") title_text = f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m" plt.title(title_text) # Code Block 20 # Chi Plots # calculate the chi index cf2.calculate_chi() # chi-elevation plots in the profiled channels plt.figure(12) for i, outlet_id in enumerate(prf2.data_structure): for j, segment_id in enumerate(prf2.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf2.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] color = segment["color"] plt.plot( mg2.at_node["channel__chi_index"][profile_ids], mg2.at_node["topographic__elevation"][profile_ids], color=color, label=label, ) plt.xlabel("chi index (m)") plt.ylabel("elevation (m)") plt.legend(loc="lower right") title_text = ( f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m; concavity={theta2}" ) plt.title(title_text) # chi map plt.figure(13) imshow_grid( mg2, "channel__chi_index", grid_units=("m", "m"), var_name="Chi index (m)", cmap="jet", ) plt.title( f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m; concavity={theta2}" ) # Code Block 21 # Plot channel steepness along profiles and across the landscape # calculate channel steepness sf2.calculate_steepnesses() # plots of steepnes vs. distance upstream in the profiled channels plt.figure(14) for i, outlet_id in enumerate(prf2.data_structure): for j, segment_id in enumerate(prf2.data_structure[outlet_id]): if j == 0: label = "channel {i}".format(i=i + 1) else: label = "_nolegend_" segment = prf2.data_structure[outlet_id][segment_id] profile_ids = segment["ids"] distance_upstream = segment["distances"] color = segment["color"] plt.plot( distance_upstream, mg2.at_node["channel__steepness_index"][profile_ids], "x", color=color, label=label, ) plt.xlabel("distance upstream (m)") plt.ylabel("steepness index") plt.legend(loc="upper left") plt.title( f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m; concavity={theta2}" ) # channel steepness map plt.figure(15) imshow_grid( mg2, "channel__steepness_index", grid_units=("m", "m"), var_name="Steepness index ", cmap="jet", ) plt.title( f"$K_{{sp}}$={K_sp2}; $time$={total_time} yr; $dx$={dxy2} m; concavity={theta2}" ) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Working with ndarray Step2: Examining ndrray Step3: Why to use numpy? Step4: Basic Operation Step5: Most Common Functions Step6: Multi Dimentional Array Step7: zeros(shape, dtype=float, order='C') and ones(shape, dtype=float, order='C') Step8: np.linspace(start, stop, num=50, endpoint=True, retstep=False) Step9: random_sample(size=None) Step10: Statistical Analysis Step11: np.max(a, axis=None, out=None, keepdims=False) Step12: np.min(a, axis=None, out=None, keepdims=False) Step13: np.mean(a, axis=None, dtype=None, out=None, keepdims=False) Step14: np.median(a, axis=None, out=None, overwrite_input=False) Step15: np.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False) Step16: np.sum(a, axis=None, dtype=None, out=None, keepdims=False) Step17: Reshaping Step18: np.ravel(a, order='C') Step19: Slicing Step20: Slicing a range Step21: Stepping Step22: Matrix Operations Step23: Addition Step24: Subtraction Step25: Multiplication (Element by Element) Step26: Multiplication (Matrix Multiplication) Step27: Division Step28: Square Step29: Power Step30: Transpose Step31: Inverse
<ASSISTANT_TASK:> Python Code: import numpy as np np.arange(10) np.arange(1,10) np.arange(1,10, 0.5) np.arange(1,10, 3) np.arange(1,10, 2, dtype=np.float64) ds = np.arange(1,10,2) ds.ndim ds.shape ds.size ds.dtype ds.itemsize x=ds.data list(x) ds # Memory Usage ds.size * ds.itemsize %%capture timeit_results # Regular Python %timeit python_list_1 = range(1,1000) python_list_1 = range(1,1000) python_list_2 = range(1,1000) #Numpy %timeit numpy_list_1 = np.arange(1,1000) numpy_list_1 = np.arange(1,1000) numpy_list_2 = np.arange(1,1000) print timeit_results # Function to calculate time in seconds def return_time(timeit_result): temp_time = float(timeit_result.split(" ")[5]) temp_unit = timeit_result.split(" ")[6] if temp_unit == "ms": temp_time = temp_time * 1e-3 elif temp_unit == "us": temp_time = temp_time * 1e-6 elif temp_unit == "ns": temp_time = temp_time * 1e-9 return temp_time python_time = return_time(timeit_results.stdout.split("\n")[0]) numpy_time = return_time(timeit_results.stdout.split("\n")[1]) print "Python/NumPy: %.1f" % (python_time/numpy_time) %%capture timeit_python %%timeit # Regular Python [(x + y) for x, y in zip(python_list_1, python_list_2)] [(x - y) for x, y in zip(python_list_1, python_list_2)] [(x * y) for x, y in zip(python_list_1, python_list_2)] [(x / y) for x, y in zip(python_list_1, python_list_2)]; print timeit_python %%capture timeit_numpy %%timeit #Numpy numpy_list_1 + numpy_list_2 numpy_list_1 - numpy_list_2 numpy_list_1 * numpy_list_2 numpy_list_1 / numpy_list_2; print timeit_numpy python_time = return_time(timeit_python.stdout) numpy_time = return_time(timeit_numpy.stdout) print "Python/NumPy: %.1f" % (python_time/numpy_time) np.array([1,2,3,4,5]) np.array([[1,2],[3,4],[5,6]]) np.zeros((3,4)) np.zeros((3,4), dtype=np.int64) np.ones((3,4)) np.linspace(1,5) np.linspace(0,2,num=4) np.linspace(0,2,num=4,endpoint=False) np.random.random((2,3)) np.random.random_sample((2,3)) data_set = np.random.random((2,3)) data_set np.max(data_set) np.max(data_set, axis=0) np.max(data_set, axis=1) np.min(data_set) np.mean(data_set) np.median(data_set) np.std(data_set) np.sum(data_set) np.reshape(data_set, (3,2)) np.reshape(data_set, (6,1)) np.reshape(data_set, (6)) np.ravel(data_set) data_set = np.random.random((5,10)) data_set data_set[1] data_set[1][0] data_set[1,0] data_set[2:4] data_set[2:4,0] data_set[2:4,0:2] data_set[:,0] data_set[2:4:1] data_set[::] data_set[::2] data_set[2:4] data_set[2:4,::2] import numpy as np # Matrix A A = np.array([[1,2],[3,4]]) # Matrix B B = np.array([[3,4],[5,6]]) A+B A-B A*B A.dot(B) A/B np.square(A) np.power(A,3) #cube of matrix A.transpose() np.linalg.inv(A) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 그래디언트 및 자동 미분 소개 Step2: 그래디언트 계산하기 Step3: 일부 연산을 기록한 후에는 GradientTape.gradient(target, sources)를 사용하여 일부 소스(종종 모델 변수)에 상대적인 일부 대상(종종 손실)의 그래디언트를 계산합니다. Step4: 위의 예제는 스칼라를 사용하지만, tf.GradientTape는 모든 텐서에서 쉽게 작동합니다. Step5: 두 변수 모두에 대해 loss의 그래디언트를 가져오려면, 두 변수를 gradient 메서드에 소스로 전달할 수 있습니다. 테이프는 소스가 전달되는 방식에 대해 융통성이 있으며 목록 또는 사전의 중첩된 조합을 허용하고 같은 방식으로 구조화된 그래디언트를 반환합니다(tf.nest 참조). Step6: 각 소스에 대한 그래디언트는 소스의 형상을 갖습니다. Step7: 다음은 그래디언트 계산입니다. 이번에는 변수의 사전을 전달합니다. Step8: 모델에 대한 그래디언트 Step9: <a id="watches"></a> Step10: GradientTape.watched_variables 메서드를 사용하여 테이프에서 감시 중인 변수를 나열할 수 있습니다. Step11: tf.GradientTape는 사용자가 감시 대상 또는 감시 예외 대상을 제어할 수 있는 후크를 제공합니다. Step12: 반대로, 모든 tf.Variables을 감시하는 기본 동작을 비활성화하려면, 그래디언트 테이프를 만들 때 watch_accessed_variables=False를 설정합니다. 이 계산은 두 가지 변수를 사용하지만, 변수 중 하나의 그래디언트만 연결합니다. Step13: x0에서 GradientTape.watch가 호출되지 않았으므로 이에 대한 그래디언트가 계산되지 않습니다. Step14: 중간 결과 Step15: 기본적으로, GradientTape.gradient 메서드가 호출되면 GradientTape가 보유한 리소스가 해제됩니다. 동일한 계산에 대해 여러 그래디언트를 계산하려면 persistent=True 그래디언트 테이프를 만듭니다. 이렇게 하면 테이프 객체가 가비지 수집될 때 리소스가 해제되면 gradient 메서드를 여러 번 호출할 수 있습니다. 예를 들면 다음과 같습니다. Step16: 성능에 대한 참고 사항 Step17: 따라서, 여러 대상의 그래디언트를 요청하면 각 소스의 결과는 다음과 같습니다. Step18: 마찬가지로, 대상이 스칼라가 아닌 경우 합계의 그래디언트가 계산됩니다. Step19: 이렇게 하면, 손실 컬렉션 합계의 그래디언트 또는 요소별 손실 계산 합계의 그래디언트를 간단하게 구할 수 있습니다. Step20: 흐름 제어하기 Step21: 제어문 자체는 미분할 수 없으므로 그래디언트 기반 최적화 프로그램에는 보이지 않습니다. Step22: None의 그래디언트 구하기 Step23: 여기서 z는 명확하게 x에 연결되어 있지 않지만, 그래디언트의 연결을 끊을 수 있는 몇 가지 덜 명확한 방법이 있습니다. Step24: 2. TensorFlow 외부에서 계산했습니다. Step25: 3. 정수 또는 문자열을 통해 그래디언트를 구했습니다. Step26: TensorFlow는 유형 간에 자동으로 전송되지 않으므로 실제로 그래디언트가 누락되는 대신 유형 오류가 발생합니다. Step27: 마찬가지로, tf.data.Dataset 반복기(iterator)와 tf.queue는 상태 저장이며 이들을 통과하는 텐서의 모든 그래디언트를 중지합니다. Step28: 이 op를 통해 미분해야 하는 경우, 그래디언트를 구현하고 등록하거나(tf.RegisterGradient 사용) 다른 ops를 사용하여 함수를 다시 구현해야 합니다.
<ASSISTANT_TASK:> Python Code: #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import matplotlib.pyplot as plt import tensorflow as tf x = tf.Variable(3.0) with tf.GradientTape() as tape: y = x**2 # dy = 2x * dx dy_dx = tape.gradient(y, x) dy_dx.numpy() w = tf.Variable(tf.random.normal((3, 2)), name='w') b = tf.Variable(tf.zeros(2, dtype=tf.float32), name='b') x = [[1., 2., 3.]] with tf.GradientTape(persistent=True) as tape: y = x @ w + b loss = tf.reduce_mean(y**2) [dl_dw, dl_db] = tape.gradient(loss, [w, b]) print(w.shape) print(dl_dw.shape) my_vars = { 'w': w, 'b': b } grad = tape.gradient(loss, my_vars) grad['b'] layer = tf.keras.layers.Dense(2, activation='relu') x = tf.constant([[1., 2., 3.]]) with tf.GradientTape() as tape: # Forward pass y = layer(x) loss = tf.reduce_mean(y**2) # Calculate gradients with respect to every trainable variable grad = tape.gradient(loss, layer.trainable_variables) for var, g in zip(layer.trainable_variables, grad): print(f'{var.name}, shape: {g.shape}') # A trainable variable x0 = tf.Variable(3.0, name='x0') # Not trainable x1 = tf.Variable(3.0, name='x1', trainable=False) # Not a Variable: A variable + tensor returns a tensor. x2 = tf.Variable(2.0, name='x2') + 1.0 # Not a variable x3 = tf.constant(3.0, name='x3') with tf.GradientTape() as tape: y = (x0**2) + (x1**2) + (x2**2) grad = tape.gradient(y, [x0, x1, x2, x3]) for g in grad: print(g) [var.name for var in tape.watched_variables()] x = tf.constant(3.0) with tf.GradientTape() as tape: tape.watch(x) y = x**2 # dy = 2x * dx dy_dx = tape.gradient(y, x) print(dy_dx.numpy()) x0 = tf.Variable(0.0) x1 = tf.Variable(10.0) with tf.GradientTape(watch_accessed_variables=False) as tape: tape.watch(x1) y0 = tf.math.sin(x0) y1 = tf.nn.softplus(x1) y = y0 + y1 ys = tf.reduce_sum(y) # dys/dx1 = exp(x1) / (1 + exp(x1)) = sigmoid(x1) grad = tape.gradient(ys, {'x0': x0, 'x1': x1}) print('dy/dx0:', grad['x0']) print('dy/dx1:', grad['x1'].numpy()) x = tf.constant(3.0) with tf.GradientTape() as tape: tape.watch(x) y = x * x z = y * y # Use the tape to compute the gradient of z with respect to the # intermediate value y. # dz_dy = 2 * y and y = x ** 2 = 9 print(tape.gradient(z, y).numpy()) x = tf.constant([1, 3.0]) with tf.GradientTape(persistent=True) as tape: tape.watch(x) y = x * x z = y * y print(tape.gradient(z, x).numpy()) # 108.0 (4 * x**3 at x = 3) print(tape.gradient(y, x).numpy()) # 6.0 (2 * x) del tape # Drop the reference to the tape x = tf.Variable(2.0) with tf.GradientTape(persistent=True) as tape: y0 = x**2 y1 = 1 / x print(tape.gradient(y0, x).numpy()) print(tape.gradient(y1, x).numpy()) x = tf.Variable(2.0) with tf.GradientTape() as tape: y0 = x**2 y1 = 1 / x print(tape.gradient({'y0': y0, 'y1': y1}, x).numpy()) x = tf.Variable(2.) with tf.GradientTape() as tape: y = x * [3., 4.] print(tape.gradient(y, x).numpy()) x = tf.linspace(-10.0, 10.0, 200+1) with tf.GradientTape() as tape: tape.watch(x) y = tf.nn.sigmoid(x) dy_dx = tape.gradient(y, x) plt.plot(x, y, label='y') plt.plot(x, dy_dx, label='dy/dx') plt.legend() _ = plt.xlabel('x') x = tf.constant(1.0) v0 = tf.Variable(2.0) v1 = tf.Variable(2.0) with tf.GradientTape(persistent=True) as tape: tape.watch(x) if x > 0.0: result = v0 else: result = v1**2 dv0, dv1 = tape.gradient(result, [v0, v1]) print(dv0) print(dv1) dx = tape.gradient(result, x) print(dx) x = tf.Variable(2.) y = tf.Variable(3.) with tf.GradientTape() as tape: z = y * y print(tape.gradient(z, x)) x = tf.Variable(2.0) for epoch in range(2): with tf.GradientTape() as tape: y = x+1 print(type(x).__name__, ":", tape.gradient(y, x)) x = x + 1 # This should be `x.assign_add(1)` x = tf.Variable([[1.0, 2.0], [3.0, 4.0]], dtype=tf.float32) with tf.GradientTape() as tape: x2 = x**2 # This step is calculated with NumPy y = np.mean(x2, axis=0) # Like most ops, reduce_mean will cast the NumPy array to a constant tensor # using `tf.convert_to_tensor`. y = tf.reduce_mean(y, axis=0) print(tape.gradient(y, x)) x = tf.constant(10) with tf.GradientTape() as g: g.watch(x) y = x * x print(g.gradient(y, x)) x0 = tf.Variable(3.0) x1 = tf.Variable(0.0) with tf.GradientTape() as tape: # Update x1 = x1 + x0. x1.assign_add(x0) # The tape starts recording from x1. y = x1**2 # y = (x1 + x0)**2 # This doesn't work. print(tape.gradient(y, x0)) #dy/dx0 = 2*(x1 + x0) image = tf.Variable([[[0.5, 0.0, 0.0]]]) delta = tf.Variable(0.1) with tf.GradientTape() as tape: new_image = tf.image.adjust_contrast(image, delta) try: print(tape.gradient(new_image, [image, delta])) assert False # This should not happen. except LookupError as e: print(f'{type(e).__name__}: {e}') x = tf.Variable([2., 2.]) y = tf.Variable(3.) with tf.GradientTape() as tape: z = y**2 print(tape.gradient(z, x, unconnected_gradients=tf.UnconnectedGradients.ZERO)) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Now we must generate a dictionary which maps vocabulary into a number
<ASSISTANT_TASK:> Python Code: from itertools import chain from collections import OrderedDict reviews_merged = OrderedDict() # Flatten the reviews, so each review is just a single list of words. n_reviews = -1 for bus_id in set(review.business_id.values[:n_reviews]): # This horrible line first collapses each review of a corresponding business into a list # of lists, and then collapses the list of sentences to a long list of words reviews_merged[bus_id] = list(chain.from_iterable( chain.from_iterable( review.cleaned_tokenized[review.business_id==bus_id] ))) import time from itertools import chain print 'Generating vector dictionary....' # Review level LDA # review_flatten = list(chain.from_iterable(review.cleaned_tokenized.iloc[:])) # id2word_wiki = corpora.Dictionary(review_flatten) start = time.time() # Business level LDA (all reviews for a business merged) id2word_wiki = corpora.Dictionary(reviews_merged.values()) print 'Dictonary generated in %1.2f seconds'%(time.time()-start) # Convert corpus to bag of words for use with gensim... # See https://radimrehurek.com/gensim/tut1.html#from-strings-to-vectors #corpus = map(lambda doc: id2word_wiki.doc2bow(doc), review_flatten) corpus = map(lambda doc: id2word_wiki.doc2bow(doc), reviews_merged.values()) corpora.MmCorpus.serialize('../output/bar_corpus.mm', corpus) # Can load the corpus with # from gensim import corpora # corpus = corpora.MmCorpus('../output/bar_corpus.mm') import gensim print 'Fitting LDA Model' start = time.time() ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=10, id2word=id2word_wiki, passes=5,) print 'LDA fit in %1.2f seconds'%(time.time()-start) for topic in ldamodel.print_topics(num_topics=10, num_words=8): print topic from sklearn.decomposition import LatentDirichletAllocation, nmf lda = LatentDirichletAllocation(n_topics=10, evaluate_every=1000, n_jobs=12, verbose=True) lda.fit(corpus[:2000]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Step 1 Step3: Include an exploratory visualization of the dataset Step7: Histogram of the data shows that the trainign data is unevenly distributed. This might affect the training of CNN model. Step 2 Step13: Model Architecture Step14: Train, Validate and Test the Model Step15: Step 3 Step16: Predict the Sign Type for Each Image/Analyze Performance/ Output Soft Max Step17: Output Top 5 Softmax Probabilities For Each Image Found on the Web Step18: Project Writeup
<ASSISTANT_TASK:> Python Code: # Import all the relevant modules. import cv2 import csv import matplotlib.image as mpimg import matplotlib.mlab as mlab import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle from random import randint import seaborn as sns from sklearn.utils import shuffle import tensorflow as tf from tensorflow.contrib.layers import flatten #Load the data training_file = "train.p" validation_file= "valid.p" testing_file = "test.p" with open(training_file, mode='rb') as file: train = pickle.load(file) with open(validation_file, mode='rb') as file: valid = pickle.load(file) with open(testing_file, mode='rb') as file: test = pickle.load(file) X_train_ori, y_train_ori = train['features'], train['labels'] #Create a array large enough to hold the new agumented images #which will be created in the pre processing section X_train = np.empty((3*X_train_ori.shape[0],X_train_ori.shape[1],X_train_ori.shape[2],X_train_ori.shape[3])) y_train = np.empty((3*y_train_ori.shape[0])) X_valid, y_valid = valid['features'], valid['labels'] X_test, y_test = test['features'], test['labels'] #Number of original training examples n_train_ori = X_train_ori.shape[0] print("Number of original training examples =", n_train_ori) # Number of training examples after image agumentation n_train = X_train.shape[0] print("Number of training examples =", n_train) # Number of validation examples n_validation = X_valid.shape[0] print("Number of validation examples =", n_validation) # Number of testing examples. n_test = X_test.shape[0] print("Number of testing examples =", n_test) # Shape of an traffic sign image image_shape = X_train.shape[1:] print("Image data shape =", image_shape) # Unique classes/labels there are in the dataset. n_classes = len(set(y_train_ori)) print("Number of classes =", n_classes) ### Data exploration visualization # Visualizations will be shown in the notebook. %matplotlib inline def plotTrafficSign(n_rows, n_cols): This function displays random images from the trainign data set. fig, axes = plt.subplots(nrows = n_rows, ncols = n_cols, figsize=(60,30)) for row in axes: for col in row: index = randint(0,n_train_ori) col.imshow(X_train_ori[index,:,:,:]) col.set_title(y_train_ori[index]) #Plot traffic signs for visualization plotTrafficSign(10, 5) #Plot distribution of data sns.distplot(y_train_ori, kde=False, bins=n_classes) sns.distplot(y_valid, kde=False, bins=n_classes) sns.distplot(y_test, kde=False, bins=n_classes) ### Preprocess the data. def dataGeneration(): This function auguments the training data by creating new data (via image rotation) global X_train global y_train global y_train_ori global X_train_ori global n_train_ori #Create new data by fliping the images in the vertical and horizontal directions X_train[0:n_train_ori,:,:,:] = X_train_ori[:,:,:,:] y_train[0:n_train_ori] = y_train_ori[:] width = X_train.shape[1] height = X_train.shape[2] center = (width/ 2, height/ 2) for index in range(n_train_ori): #Rotate by 10 degrees rotation = cv2.getRotationMatrix2D(center, 10, 1.0) X_train[n_train_ori+index,:,:,:] = cv2.warpAffine(X_train_ori[index,:,:,:], rotation, (width, height)) y_train[n_train_ori+index] = y_train_ori[index] #Flip the image horizontally rotation = cv2.getRotationMatrix2D(center, -10, 1.0) X_train[2*n_train_ori+index,:,:,:] = cv2.warpAffine(X_train_ori[index,:,:,:], rotation, (width, height)) y_train[2*n_train_ori+index] = y_train_ori[index] def normalize(X_input): This function normalizes the data #Min-Max normalization of data range_min = 0.1 range_max = 0.9 data_min = 0 data_max = 255 X_input = range_min + (((X_input - data_min)*(range_max - range_min) )/(data_max - data_min)) return X_input def randomize(X_input, y_input): This function randomizes the data. #Randomize the data X_input, y_input = shuffle(X_input, y_input) return X_input, y_input dataGeneration() X_train = normalize(X_train) X_valid = normalize(X_valid) X_test = normalize(X_test) X_train, y_train = randomize(X_train, y_train) def LeNet(x, keep_prob=1.0): # Arguments used for tf.truncated_normal, randomly defines variables for the weights and biases for each layer mu = 0 sigma = 0.1 global n_classes # Layer 1: Convolutional. Input = 32x32x3. Output = 28x28x6. conv1_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 3, 6), mean = mu, stddev = sigma)) conv1_b = tf.Variable(tf.zeros(6)) conv1 = tf.nn.conv2d(x, conv1_W, strides=[1, 1, 1, 1], padding='VALID') + conv1_b # Activation. conv1 = tf.nn.relu(conv1) # Pooling. Input = 28x28x6. Output = 14x14x6. conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') #Dropout conv1 = tf.nn.dropout(conv1, keep_prob) # Layer 2: Convolutional. Output = 10x10x16. conv2_W = tf.Variable(tf.truncated_normal(shape=(5, 5, 6, 16), mean = mu, stddev = sigma)) conv2_b = tf.Variable(tf.zeros(16)) conv2 = tf.nn.conv2d(conv1, conv2_W, strides=[1, 1, 1, 1], padding='VALID') + conv2_b # Activation. conv2 = tf.nn.relu(conv2) # Pooling. Input = 10x10x16. Output = 5x5x16. conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID') #Dropout conv2 = tf.nn.dropout(conv2, keep_prob) # Flatten. Input = 5x5x16. Output = 400. fc0 = flatten(conv2) # Layer 3: Fully Connected. Input = 400. Output = 300. fc1_W = tf.Variable(tf.truncated_normal(shape=(400, 300), mean = mu, stddev = sigma)) fc1_b = tf.Variable(tf.zeros(300)) fc1 = tf.matmul(fc0, fc1_W) + fc1_b # Activation. fc1 = tf.nn.relu(fc1) #Dropout fc1 = tf.nn.dropout(fc1, keep_prob) # Layer 4: Fully Connected. Input = 300. Output = 200. fc2_W = tf.Variable(tf.truncated_normal(shape=(300, 200), mean = mu, stddev = sigma)) fc2_b = tf.Variable(tf.zeros(200)) fc2 = tf.matmul(fc1, fc2_W) + fc2_b # Activation. fc2 = tf.nn.relu(fc2) #Dropout fc2 = tf.nn.dropout(fc2, keep_prob) # Layer 5: Fully Connected. Input = 200. Output = n_classes. fc3_W = tf.Variable(tf.truncated_normal(shape=(200, n_classes), mean = mu, stddev = sigma)) fc3_b = tf.Variable(tf.zeros(n_classes)) logits = tf.matmul(fc2, fc3_W) + fc3_b return logits class CModel: def __init__(self, input_conv, target, learning_rate = 0.001, epochs = 10, batch_size = 128, keep_prob=1.0, debug_logging = False): This is the ctor for the class CModel. It initializes various hyper parameters required for training. self.learning_rate = learning_rate self.epoch = epochs self.batch_size = batch_size self.debug_logging = debug_logging self.input_conv = input_conv self.target = target self.logits = None self.one_hot_out_class = None self.keep_prob = keep_prob def __loss(self): This function calculates the loss. cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=self.one_hot_out_class, logits=self.logits) loss_operation = tf.reduce_mean(cross_entropy) return loss_operation def __optimize(self, loss_operation): This function runs the optimizer to train the weights. optimizer = tf.train.AdamOptimizer(learning_rate = self.learning_rate) minimize_loss = optimizer.minimize(loss_operation) return minimize_loss def trainLeNet(self): This function trains the LeNet network. print("n_classes ",n_classes) self.logits = LeNet(self.input_conv,self.keep_prob) self.one_hot_out_class = tf.one_hot(self.target, n_classes) loss_operation = self.__loss() minimize_loss = self.__optimize(loss_operation) return minimize_loss def accuracy(self): This function calculates the accuracy of the model. prediction, _ = self.prediction() correct_prediction = tf.equal(prediction, tf.argmax(self.one_hot_out_class, 1)) accuracy_operation = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) return accuracy_operation def prediction(self): return tf.argmax(self.logits, 1), tf.nn.top_k(tf.nn.softmax(self.logits), k=5) #Model training class CEvaluate: def __init__(self, learning_rate=0.001, epoch=10, batch_size=128): self.input_conv = tf.placeholder(tf.float32, (None, 32, 32, 3)) self.target = tf.placeholder(tf.int32, (None)) self.keep_prob = tf.placeholder(tf.float32) self.model = CModel(self.input_conv, self.target, learning_rate, epoch, batch_size, self.keep_prob) self.train = self.model.trainLeNet() self.accuracy_operation = self.model.accuracy() self.epoch = epoch self.batch_size = batch_size self.saver = tf.train.Saver() self.prediction = self.model.prediction() def __evaluate(self, X_data, y_data, keep_prob=1): num_examples = len(X_data) total_accuracy = 0 sess = tf.get_default_session() for offset in range(0, num_examples, self.batch_size): batch_x, batch_y = X_data[offset:offset+self.batch_size], y_data[offset:offset+self.batch_size] accuracy = sess.run(self.accuracy_operation, feed_dict={self.input_conv: batch_x, \ self.target: batch_y, self.keep_prob: 1.0}) total_accuracy += (accuracy * len(batch_x)) return total_accuracy / num_examples def test(self): global X_test global y_test with tf.Session() as sess: self.saver.restore(sess, tf.train.latest_checkpoint('.')) test_accuracy = self.__evaluate(X_test, y_test) print("Test Accuracy = ", test_accuracy) def predictions(self, test_images): with tf.Session() as sess: self.saver.restore(sess, './lenet') predict, top_k_softmax = sess.run(self.prediction, feed_dict={self.input_conv: test_images, self.keep_prob: 1.0}) return predict, top_k_softmax def run(self): global X_train global y_train global X_valid global y_valid validation_accuracy = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) num_examples = len(X_train) print("Training...") for i in range(self.epoch): print("Epoch == ", i) for offset in range(0, num_examples, self.batch_size): end = offset + self.batch_size batch_x, batch_y = X_train[offset:end], y_train[offset:end] sess.run(self.train, feed_dict={self.input_conv: batch_x, self.target: batch_y, self.keep_prob: 0.9}) validation_accuracy.append(self.__evaluate(X_valid, y_valid)) print("Validation Accuracy == ", validation_accuracy[i]) self.saver.save(sess, './lenet') plt.plot(validation_accuracy) plt.xlabel("Epoch") plt.ylabel("Validation Accuracy") plt.title("Tracking of validation accuracy") plt.show() learning_rate = 0.001 epoch = 30 batch_size = 128 eval_model = CEvaluate(learning_rate, epoch, batch_size) eval_model.run() eval_model.test() ### Load the images and plot them. import os test_images = os.listdir('test_images') num_test_images = 5 X_new_test = np.empty((num_test_images, 32, 32, 3)) y_new_test = np.empty(num_test_images) dic = {"60.jpg":3, "70.jpg":4, "roadwork.jpg":25, "stop.jpg":14, "yield.jpg":13} for index, image_name in enumerate(test_images): image_path = os.path.join('test_images', image_name) original_image = mpimg.imread(image_path) X_new_test[index,:,:,:] = cv2.resize(original_image,(32,32),interpolation=cv2.INTER_AREA) y_new_test[index] = dic[image_name] plt.imshow(X_new_test[index,:,:,:]) plt.show() with open('signnames.csv', mode='r') as file: reader = csv.reader(file) sign_mapping = {rows[0]:rows[1] for rows in reader} X_new_test = normalize(X_new_test) predict, top_k_softmax = eval_model.predictions(X_new_test) for output,expected in zip(predict,y_new_test): print("Expected {} ...... Output {}".format(sign_mapping[str(int(expected))], sign_mapping[str(output)])) ### Calculate the accuracy for these 5 new images. count = 0 for result, expectation in zip(predict, y_new_test): if result == expectation: count = count+1 accuracy = count/num_test_images print("accuracy of the prediction of new test images", accuracy) print("top_k_softmax == ", top_k_softmax) ### Visualize your network's feature maps here. ### Feel free to use as many code cells as needed. # image_input: the test image being fed into the network to produce the feature maps # tf_activation: should be a tf variable name used during your training procedure that represents the calculated state of a specific weight layer # activation_min/max: can be used to view the activation contrast in more detail, by default matplot sets min and max to the actual min and max values of the output # plt_num: used to plot out multiple different weight feature map sets on the same block, just extend the plt number for each new feature map entry def outputFeatureMap(image_input, tf_activation, activation_min=-1, activation_max=-1 ,plt_num=1): # Here make sure to preprocess your image_input in a way your network expects # with size, normalization, ect if needed # image_input = # Note: x should be the same name as your network's tensorflow data placeholder variable # If you get an error tf_activation is not defined it may be having trouble accessing the variable from inside a function activation = tf_activation.eval(session=sess,feed_dict={x : image_input}) featuremaps = activation.shape[3] plt.figure(plt_num, figsize=(15,15)) for featuremap in range(featuremaps): plt.subplot(6,8, featuremap+1) # sets the number of feature maps to show on each row and column plt.title('FeatureMap ' + str(featuremap)) # displays the feature map number if activation_min != -1 & activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin =activation_min, vmax=activation_max, cmap="gray") elif activation_max != -1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmax=activation_max, cmap="gray") elif activation_min !=-1: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", vmin=activation_min, cmap="gray") else: plt.imshow(activation[0,:,:, featuremap], interpolation="nearest", cmap="gray") <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: If you want the confidence intervals
<ASSISTANT_TASK:> Python Code: from lmfit.models import GaussianModel # initialize the gaussian model gm = GaussianModel() # take a look at the parameter names print gm.param_names # I get RuntimeError since my numpy version is a little old # guess parameters par_guess = gm.guess(n,x=xpos) # fit data result = gm.fit(n, par_guess, x=xpos, method='leastsq') # quick look at result print result.fit_report() # get best fit error and stderr print result.params['amplitude'].value,result.params['amplitude'].stderr print result.params['center'].value,result.params['center'].stderr print result.params['sigma'].value,result.params['sigma'].stderr fig = plt.figure() plt.hist(xdata, bins=bins) plt.plot(xpos, result.best_fit, 'green') import lmfit def my_gaussian_model(p, x, y): a = np.float(p['a']) b = np.float(p['b']) c = np.float(p['c']) return a/np.sqrt(2.*c) * np.exp( -np.power(x-b,2.)/2./np.power(c, 2.)) - y pars = lmfit.Parameters() pars.add_many(('a',0.1), ('b',0.1), ('c',0.1)) # initialize the minimizer mini = lmfit.Minimizer(my_gaussian_model, pars, (xpos, n)) # do the minimization result = mini.minimize(method='leastsq') # print the fit report print lmfit.fit_report(mini.params) # NOTE # the parameter 'a' in function my_gaussian_model is different from the built-in model in lmfit # so the amplitude value is a little different # predit the confidence interval of all parameters ci, trace = lmfit.conf_interval(mini, sigmas=[0.68,0.95], trace=True, verbose=False) # ci = lmfit.conf_interval(mini) lmfit.printfuncs.report_ci(ci) print ci.values() a,b,prob = trace['a']['a'], trace['a']['b'], trace['a']['prob'] cx, cy, grid = lmfit.conf_interval2d(mini, 'a','b',30,30) plt.contourf(cx, cy, grid, np.linspace(0,1,11)) plt.xlabel('a') plt.colorbar() plt.ylabel('b') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Building the policy network Step2: Loss function and updates Step5: Computing cumulative rewards Step7: Playing the game Step9: Results & video
<ASSISTANT_TASK:> Python Code: # This code creates a virtual display to draw game images on. # If you are running locally, just ignore it import os if type(os.environ.get("DISPLAY")) is not str or len(os.environ.get("DISPLAY")) == 0: !bash ../xvfb start os.environ['DISPLAY'] = ':1' import gym import numpy as np, pandas as pd import matplotlib.pyplot as plt %matplotlib inline env = gym.make("CartPole-v0") # gym compatibility: unwrap TimeLimit if hasattr(env,'env'): env=env.env env.reset() n_actions = env.action_space.n state_dim = env.observation_space.shape plt.imshow(env.render("rgb_array")) import tensorflow as tf tf.reset_default_graph() # create input variables. We only need <s,a,R> for REINFORCE states = tf.placeholder('float32', (None,)+state_dim, name="states") actions = tf.placeholder('int32', name="action_ids") cumulative_rewards = tf.placeholder('float32', name="cumulative_returns") import keras import keras.layers as L #sess = tf.InteractiveSession() #keras.backend.set_session(sess) #<define network graph using raw tf or any deep learning library> #network = keras.models.Sequential() #network.add(L.InputLayer(state_dim)) #network.add(L.Dense(200, activation='relu')) #network.add(L.Dense(200, activation='relu')) #network.add(L.Dense(n_actions, activation='linear')) network = keras.models.Sequential() network.add(L.Dense(256, activation="relu", input_shape=state_dim, name="layer_1")) network.add(L.Dense(n_actions, activation="linear", name="layer_2")) print(network.summary()) #question: counting from the beginning of the model, the logits are in layer #9: model.layers[9].output #logits = network.layers[2].output #<linear outputs (symbolic) of your network> logits = network(states) policy = tf.nn.softmax(logits) log_policy = tf.nn.log_softmax(logits) # utility function to pick action in one given state def get_action_proba(s): return policy.eval({states: [s]})[0] # select log-probabilities for chosen actions, log pi(a_i|s_i) indices = tf.stack([tf.range(tf.shape(log_policy)[0]), actions], axis=-1) log_policy_for_actions = tf.gather_nd(log_policy, indices) # REINFORCE objective function # hint: you need to use log_policy_for_actions to get log probabilities for actions taken J = tf.reduce_mean((log_policy_for_actions * cumulative_rewards), axis=-1)# <policy objective as in the last formula. Please use mean, not sum.> # regularize with entropy entropy = tf.reduce_mean(policy*log_policy) # <compute entropy. Don't forget the sign!> # all network weights all_weights = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) #<a list of all trainable weights in your network> # weight updates. maximizing J is same as minimizing -J. Adding negative entropy. loss = -J - 0.1*entropy update = tf.train.AdamOptimizer().minimize(loss, var_list=all_weights) def get_cumulative_rewards(rewards, # rewards at each step gamma=0.99 # discount for reward ): take a list of immediate rewards r(s,a) for the whole session compute cumulative rewards R(s,a) (a.k.a. G(s,a) in Sutton '16) R_t = r_t + gamma*r_{t+1} + gamma^2*r_{t+2} + ... The simple way to compute cumulative rewards is to iterate from last to first time tick and compute R_t = r_t + gamma*R_{t+1} recurrently You must return an array/list of cumulative rewards with as many elements as in the initial rewards. #<your code here> cumulative_rewards = np.zeros((len(rewards))) cumulative_rewards[-1] = rewards[-1] for t in range(len(rewards)-2, -1, -1): cumulative_rewards[t] = rewards[t] + gamma * cumulative_rewards[t + 1] return cumulative_rewards #< array of cumulative rewards> assert len(get_cumulative_rewards(range(100))) == 100 assert np.allclose(get_cumulative_rewards([0, 0, 1, 0, 0, 1, 0], gamma=0.9), [1.40049, 1.5561, 1.729, 0.81, 0.9, 1.0, 0.0]) assert np.allclose(get_cumulative_rewards([0, 0, 1, -2, 3, -4, 0], gamma=0.5), [0.0625, 0.125, 0.25, -1.5, 1.0, -4.0, 0.0]) assert np.allclose(get_cumulative_rewards([0, 0, 1, 2, 3, 4, 0], gamma=0), [0, 0, 1, 2, 3, 4, 0]) print("looks good!") def train_step(_states, _actions, _rewards): given full session, trains agent with policy gradient _cumulative_rewards = get_cumulative_rewards(_rewards) update.run({states: _states, actions: _actions, cumulative_rewards: _cumulative_rewards}) def generate_session(t_max=1000): play env with REINFORCE agent and train at the session end # arrays to record session states, actions, rewards = [], [], [] s = env.reset() for t in range(t_max): # action probabilities array aka pi(a|s) action_probas = get_action_proba(s) a = np.random.choice(a=len(action_probas), p=action_probas) #<pick random action using action_probas> new_s, r, done, info = env.step(a) # record session history to train later states.append(s) actions.append(a) rewards.append(r) s = new_s if done: break train_step(states, actions, rewards) # technical: return session rewards to print them later return sum(rewards) s = tf.InteractiveSession() s.run(tf.global_variables_initializer()) for i in range(100): rewards = [generate_session() for _ in range(100)] # generate new sessions print("mean reward:%.3f" % (np.mean(rewards))) if np.mean(rewards) > 300: print("You Win!") # but you can train even further break # record sessions import gym.wrappers env = gym.wrappers.Monitor(gym.make("CartPole-v0"), directory="videos", force=True) sessions = [generate_session() for _ in range(100)] env.close() # show video from IPython.display import HTML import os video_names = list( filter(lambda s: s.endswith(".mp4"), os.listdir("./videos/"))) HTML( <video width="640" height="480" controls> <source src="{}" type="video/mp4"> </video> .format("./videos/"+video_names[-1])) # this may or may not be _last_ video. Try other indices from submit import submit_cartpole submit_cartpole(generate_session, "[email protected]", "Cecc5rcVxaVUYtsQ") # That's all, thank you for your attention! # Not having enough? There's an actor-critic waiting for you in the honor section. # But make sure you've seen the videos first. <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: A univariate example Step2: We create a bimodal distribution Step3: The simplest non-parametric technique for density estimation is the histogram. Step4: Fitting with the default arguments Step5: We present a figure of the fit, as well as the true distribution. Step6: In the code above, default arguments were used. We can also vary the bandwidth of the kernel, as we will now see. Step7: Comparing kernel functions Step8: The available kernel functions Step9: The available kernel functions on three data points Step10: A more difficult case Step11: The KDE is a distribution Step12: Cumulative distribution, it's inverse, and the survival function Step13: The Cumulative Hazard Function
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np from scipy import stats import statsmodels.api as sm import matplotlib.pyplot as plt from statsmodels.distributions.mixture_rvs import mixture_rvs np.random.seed(12345) # Seed the random number generator for reproducible results # Location, scale and weight for the two distributions dist1_loc, dist1_scale, weight1 = -1 , .5, .25 dist2_loc, dist2_scale, weight2 = 1 , .5, .75 # Sample from a mixture of distributions obs_dist = mixture_rvs(prob=[weight1, weight2], size=250, dist=[stats.norm, stats.norm], kwargs = (dict(loc=dist1_loc, scale=dist1_scale), dict(loc=dist2_loc, scale=dist2_scale))) fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) # Scatter plot of data samples and histogram ax.scatter(obs_dist, np.abs(np.random.randn(obs_dist.size)), zorder=15, color='red', marker='x', alpha=0.5, label='Samples') lines = ax.hist(obs_dist, bins=20, edgecolor='k', label='Histogram') ax.legend(loc='best') ax.grid(True, zorder=-5) kde = sm.nonparametric.KDEUnivariate(obs_dist) kde.fit() # Estimate the densities fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) # Plot the histrogram ax.hist(obs_dist, bins=20, density=True, label='Histogram from samples', zorder=5, edgecolor='k', alpha=0.5) # Plot the KDE as fitted using the default arguments ax.plot(kde.support, kde.density, lw=3, label='KDE from samples', zorder=10) # Plot the true distribution true_values = (stats.norm.pdf(loc=dist1_loc, scale=dist1_scale, x=kde.support)*weight1 + stats.norm.pdf(loc=dist2_loc, scale=dist2_scale, x=kde.support)*weight2) ax.plot(kde.support, true_values, lw=3, label='True distribution', zorder=15) # Plot the samples ax.scatter(obs_dist, np.abs(np.random.randn(obs_dist.size))/40, marker='x', color='red', zorder=20, label='Samples', alpha=0.5) ax.legend(loc='best') ax.grid(True, zorder=-5) fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) # Plot the histrogram ax.hist(obs_dist, bins=25, label='Histogram from samples', zorder=5, edgecolor='k', density=True, alpha=0.5) # Plot the KDE for various bandwidths for bandwidth in [0.1, 0.2, 0.4]: kde.fit(bw=bandwidth) # Estimate the densities ax.plot(kde.support, kde.density, '--', lw=2, color='k', zorder=10, label='KDE from samples, bw = {}'.format(round(bandwidth, 2))) # Plot the true distribution ax.plot(kde.support, true_values, lw=3, label='True distribution', zorder=15) # Plot the samples ax.scatter(obs_dist, np.abs(np.random.randn(obs_dist.size))/50, marker='x', color='red', zorder=20, label='Data samples', alpha=0.5) ax.legend(loc='best') ax.set_xlim([-3, 3]) ax.grid(True, zorder=-5) from statsmodels.nonparametric.kde import kernel_switch list(kernel_switch.keys()) # Create a figure fig = plt.figure(figsize=(12, 5)) # Enumerate every option for the kernel for i, (ker_name, ker_class) in enumerate(kernel_switch.items()): # Initialize the kernel object kernel = ker_class() # Sample from the domain domain = kernel.domain or [-3, 3] x_vals = np.linspace(*domain, num=2**10) y_vals = kernel(x_vals) # Create a subplot, set the title ax = fig.add_subplot(2, 4, i + 1) ax.set_title('Kernel function "{}"'.format(ker_name)) ax.plot(x_vals, y_vals, lw=3, label='{}'.format(ker_name)) ax.scatter([0], [0], marker='x', color='red') plt.grid(True, zorder=-5) ax.set_xlim(domain) plt.tight_layout() # Create three equidistant points data = np.linspace(-1, 1, 3) kde = sm.nonparametric.KDEUnivariate(data) # Create a figure fig = plt.figure(figsize=(12, 5)) # Enumerate every option for the kernel for i, kernel in enumerate(kernel_switch.keys()): # Create a subplot, set the title ax = fig.add_subplot(2, 4, i + 1) ax.set_title('Kernel function "{}"'.format(kernel)) # Fit the model (estimate densities) kde.fit(kernel=kernel, fft=False, gridsize=2**10) # Create the plot ax.plot(kde.support, kde.density, lw=3, label='KDE from samples', zorder=10) ax.scatter(data, np.zeros_like(data), marker='x', color='red') plt.grid(True, zorder=-5) ax.set_xlim([-3, 3]) plt.tight_layout() obs_dist = mixture_rvs([.25, .75], size=250, dist=[stats.norm, stats.beta], kwargs = (dict(loc=-1, scale=.5), dict(loc=1, scale=1, args=(1, .5)))) kde = sm.nonparametric.KDEUnivariate(obs_dist) kde.fit() fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) ax.hist(obs_dist, bins=20, density=True, edgecolor='k', zorder=4, alpha=0.5) ax.plot(kde.support, kde.density, lw=3, zorder=7) # Plot the samples ax.scatter(obs_dist, np.abs(np.random.randn(obs_dist.size))/50, marker='x', color='red', zorder=20, label='Data samples', alpha=0.5) ax.grid(True, zorder=-5) obs_dist = mixture_rvs([.25, .75], size=1000, dist=[stats.norm, stats.norm], kwargs = (dict(loc=-1, scale=.5), dict(loc=1, scale=.5))) kde = sm.nonparametric.KDEUnivariate(obs_dist) kde.fit(gridsize=2**10) kde.entropy kde.evaluate(-1) fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) ax.plot(kde.support, kde.cdf, lw=3, label='CDF') ax.plot(np.linspace(0, 1, num = kde.icdf.size), kde.icdf, lw=3, label='Inverse CDF') ax.plot(kde.support, kde.sf, lw=3, label='Survival function') ax.legend(loc = 'best') ax.grid(True, zorder=-5) fig = plt.figure(figsize=(12, 5)) ax = fig.add_subplot(111) ax.plot(kde.support, kde.cumhazard, lw=3, label='Cumulative Hazard Function') ax.legend(loc = 'best') ax.grid(True, zorder=-5) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: ... or call all the methods individually
<ASSISTANT_TASK:> Python Code: # NOTE: This will take several minutes depending on the performance of your machine audio_features = audioAnalyzer.analyze(audio_filename) # plot the features plt.rcParams['figure.figsize'] = [20, 8] audioAnalyzer.plot(audio_features) plt.show() # audio metadata extraction metadata = audioAnalyzer.crawl_musicbrainz_metadata(audio_filename) # predominant melody extraction pitch = audioAnalyzer.extract_pitch(audio_filename) # pitch post filtering pitch_filtered = audioAnalyzer.filter_pitch(pitch) # histogram computation pitch_distribution = audioAnalyzer.compute_pitch_distribution(pitch_filtered) pitch_class_distribution = copy.deepcopy(pitch_distribution) pitch_class_distribution.to_pcd() # tonic identification tonic = audioAnalyzer.identify_tonic(pitch_filtered) # get the makam from metadata if possible else apply makam recognition makams = audioAnalyzer.get_makams(metadata, pitch_filtered, tonic) makam = list(makams)[0] # for now get the first makam # transposition (ahenk) identification transposition = audioAnalyzer.identify_transposition(tonic, makam) # stable note extraction (tuning analysis) note_models = audioAnalyzer.compute_note_models(pitch_distribution, tonic, makam) # get the melodic progression model melodic_progression = audioAnalyzer.compute_melodic_progression(pitch_filtered) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load Data Step2: Create Classifier Pipeline Step3: Cross Validation Step4: Evaluate Model Step5: To get an good measure of the model's accuracy, we calculate the mean of the three scores. This is our measure of model accuracy.
<ASSISTANT_TASK:> Python Code: from sklearn.datasets import load_iris from sklearn.pipeline import make_pipeline from sklearn import preprocessing from sklearn import cross_validation from sklearn import svm # Load the iris test data iris = load_iris() # View the iris data features for the first three rows iris.data[0:3] # View the iris data target for first three rows. '0' means it flower is of the setosa species. iris.target[0:3] # Create a pipeline that scales the data then trains a support vector classifier classifier_pipeline = make_pipeline(preprocessing.StandardScaler(), svm.SVC(C=1)) # KFold/StratifiedKFold cross validation with 3 folds (the default) # applying the classifier pipeline to the feature and target data scores = cross_validation.cross_val_score(classifier_pipeline, iris.data, iris.target, cv=3) scores scores.mean() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Make a function for importing the station info for each line Step3: Import the data for each line Step4: Turn list of dict's into dic with line (key) and stations (value) Step5: Use Pickel to save the dictionary of lines with the station locations
<ASSISTANT_TASK:> Python Code: import http.client, urllib.request, urllib.parse, urllib.error, base64 import urllib import json import pickle def metro_line_import(line): Import station data from WMATA API and format it as a dictionary with staion name as the key and the [latitude, longitude] as the values headers = { # Request headers 'api_key': '7f97903f83b24fcaa6dcc929bdb73437', } params = urllib.parse.urlencode({ # Request parameters 'LineCode': line, }) try: conn = http.client.HTTPSConnection('api.wmata.com') conn.request("GET", "/Rail.svc/json/jStations?%s" % params, "{body}", headers) response = conn.getresponse() data = response.read() #print(data) conn.close() data_js = json.loads(data) line_dic = dict() for ii in range(len(data_js['Stations'])): line_dic[data_js['Stations'][ii]['Name']] = [data_js['Stations'][ii]['Lat'], data_js['Stations'][ii]['Lon']] #print(line_dic) except Exception as e: print("[Errno {0}] {1}".format(e.errno, e.strerror)) return line_dic lines = ['RD', 'YL', 'GR','BL', 'OR', 'SV'] line_stations = [] for ii in range(len(lines)): line_stations.append(metro_line_import(lines[ii])) station_data = dict() for ii in range(len(lines)): station_data[lines[ii]] = line_stations[ii] pickle.dump( station_data, open( "station_data.p", "wb" ) ) station_data['RD']['Silver Spring'] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: Problem 1) An (oversimplified) 1-D Model Step3: Problem 1b Step4: Problem 1c Step5: Problem 2) Add Noise Step6: Problem 2b Step7: Problem 3) Flux Measurement Step8: Problem 3b Step9: Problem 3c Step10: Problem 4) PSF Flux measurement Step11: Problem 4b Step12: Problem 4c
<ASSISTANT_TASK:> Python Code: import numpy as np import matplotlib.pyplot as plt %matplotlib notebook def phi(x, mu, fwhm): Evalute the 1d PSF N(mu, sigma^2) along x sigma = fwhm/2.3548 flux = 1/np.sqrt(2*np.pi*sigma**2)*np.exp(-(x - mu)**2/(2*sigma**2)) return flux x = np.linspace(0,20,21) plt.plot(x, phi(x, 10, 3)) print("The flux of the star is: {:.3f}".format(sum(phi(x, 10, 3)))) S = 100 * np.ones_like(x) F = 500 plt.plot(x, S + F*phi(x, 10, 3)) no_noise = S + F*phi(x, 10, 3) noisy_flux = np.random.normal(no_noise, np.sqrt(no_noise)) plt.plot(x, no_noise) plt.errorbar(x, noisy_flux, noisy_flux - no_noise, fmt = 'o') def simulate(x, mu, fwhm, S, F): source = F * phi(x, mu, fwhm) sky_plus_source = S * np.ones_like(x) + source noisy_flux = np.random.normal(sky_plus_source, np.sqrt(sky_plus_source)) return noisy_flux x = np.linspace(-20,20,41) sim_star = simulate(x, 0, 5, 100, 1000) ap_flux = np.sum((sim_star - 100)[np.where(np.abs(x) <= 5)]) print("The star has flux = {:.3f}".format(ap_flux)) sim_fluxes = np.empty(1000) for sim_num, dummy in enumerate(sim_fluxes): sim_star = simulate(x, 0, 5, 100, 1000) ap_flux = np.sum((sim_star - 100)[np.where(np.abs(x) <= 5)]) sim_fluxes[sim_num] = ap_flux print("The mean flux = {:.3f} with variance = {:.3f}".format(np.mean(sim_fluxes), np.var(sim_fluxes, ddof=1))) psf = phi(x, 0, 5) psf /= sum(psf**2) # normalization sim_star = simulate(x, 0, 5, 100, 1000) psf_flux = np.sum((sim_star-100)*psf) print("The PSF flux is {:.3f}".format(psf_flux)) sim_fluxes = np.empty(1000) for sim_num, dummy in enumerate(sim_fluxes): sim_star = simulate(x, 0, 5, 100, 1000) psf_flux = np.sum((sim_star-100)*psf) sim_fluxes[sim_num] = psf_flux print("The mean flux = {:.3f} with variance = {:.3f}".format(np.mean(sim_fluxes), np.var(sim_fluxes, ddof=1))) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: We are using TensorFlow-GPU 0.12.1 on Python 3.5.2, running on Windows 10 with Cuda 8.0. Step2: Definitions Step3: Data load Step4: Model definition Step5: Training and evaluation Step6: Inspecting the result Step7: Examples of correct predictions Step8: Examples of incorrect predictions
<ASSISTANT_TASK:> Python Code: import tensorflow as tf # We don't really need to import TensorFlow here since it's handled by Keras, # but we do it in order to output the version we are using. tf.__version__ from IPython.display import Image from util import Util u = Util() import numpy as np # Explicit random seed for reproducibility np.random.seed(1337) from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras import backend as K from keras.datasets import mnist batch_size = 512 nb_classes = 10 nb_epoch = 25 # path of the model graph model_image_path = 'images/model_01_MNIST.png' # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use nb_filters = 32 # size of pooling area for max pooling pool_size = (2, 2) # convolution kernel size kernel_size = (3, 3) # dense layer size dense_layer_size = 128 # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() u.plot_images(X_train[0:9], y_train[0:9]) if K.image_dim_ordering() == 'th': X_train = X_train.reshape(X_train.shape[0], 1, img_rows, img_cols) X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols) input_shape = (1, img_rows, img_cols) else: X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) input_shape = (img_rows, img_cols, 1) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255 X_test /= 255 print('X_train shape:', X_train.shape) print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) model = Sequential() model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode='valid', input_shape=input_shape, name='covolution_1_' + str(nb_filters) + '_filters')) model.add(Activation('relu', name='activation_1_relu')) model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], name='covolution_2_' + str(nb_filters) + '_filters')) model.add(Activation('relu', name='activation_2_relu')) model.add(MaxPooling2D(pool_size=pool_size, name='max_pooling_1_' + str(pool_size) + '_pool_size')) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(dense_layer_size, name='fully_connected_1_' + str(dense_layer_size) + '_neurons')) model.add(Activation('relu', name='activation_3_relu')) model.add(Dropout(0.4)) model.add(Dense(nb_classes, name='output_' + str(nb_classes) + '_neurons')) model.add(Activation('softmax', name='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) Image(u.maybe_save_network(model, model_image_path), width=300) history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, validation_data=(X_test, Y_test)) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) u.plot_history(history) u.plot_history(history, metric='loss', loc='upper left') # The predict_classes function outputs the highest probability class # according to the trained classifier for each input example. predicted_classes = model.predict_classes(X_test) # Check which items we got right / wrong correct_indices = np.nonzero(predicted_classes == y_test)[0] incorrect_indices = np.nonzero(predicted_classes != y_test)[0] u.plot_confusion_matrix(y_test, nb_classes, predicted_classes) u.plot_images(X_test[correct_indices[:9]], y_test[correct_indices[:9]], predicted_classes[correct_indices[:9]]) u.plot_images(X_test[incorrect_indices[:9]], y_test[incorrect_indices[:9]], predicted_classes[incorrect_indices[:9]]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: 以上が数値計算を行うプログラムである. Step2: 3. 可視化 Step3: animfuncを実行することで,pendulum.mp4のようなアニメーション動画が保存される. Step4: <video width="432" height="288" controls>
<ASSISTANT_TASK:> Python Code: import numpy as np from scipy.integrate import odeint from math import sin ''' constants ''' m = 1 # mass of the pendulum [kg] l = 1 # length of the pendulum [m] g = 10 # Gravitational acceleration [m/s^2] ''' time setting ''' t_end = 10 # simulation time [s] t_fps = 50 # frame per second. This value means smoothness of produced graph and animation t_step = 1/t_fps t = np.arange(0, t_end, t_step) ''' initial value ''' theta_init = 0 # initial value of theta [rad] dtheta_init = 1 # initial value of dot theta [rad/s] s_init = np.r_[theta_init, dtheta_init] def odefunc(s, t): theta = s[0] dtheta = s[1] ddtheta = -g/l*sin(theta) # <- Equation of motion return np.r_[dtheta, ddtheta] s = odeint(odefunc, s_init, t) print('ODE calculation finished.') print(np.c_[t, s]) import matplotlib.pyplot as plt import matplotlib.animation as animation from math import cos def animfunc(s, t): ''' Create mp4 movie file of a pendulum ''' plt.close() fig = plt.figure() plt.axis('scaled') plt.xlim(-1, 1) plt.ylim(-1.5, .5) plt.grid('on') draw_ceiling, = plt.plot([-2, 2], [0, 0], c='k', lw=2) draw_pendulum, = plt.plot([], [], lw=4, c='b') draw_mass, = plt.plot([], [], lw=2, marker='o', ms=20, mew=4, mec='b', mfc='c') indicate_time = plt.text(-0.3, 0.25, [], fontsize=12) def update_figure(i): ''' Set data of each movie frame ''' mass_x = l*sin(s[i, 0]) mass_y = - l*cos(s[i, 0]) pendlum_x = [0, mass_x] pendlum_y = [0, mass_y] draw_pendulum.set_data(pendlum_x, pendlum_y) draw_mass.set_data(mass_x, mass_y) indicate_time.set_text('t = {0:4.2f} [s]'.format(t[i])) ''' Create a movie file ''' line_ani = animation.FuncAnimation(fig, update_figure, frames=len(t)) line_ani.save('./pendulum.mp4', fps=t_fps) print('pendulum.mp4 created') animfunc(s, t) plt.figure() plt.plot(t, s[:, 0]) plt.xlabel('t [s]') plt.ylabel('theta [rad]') plt.savefig('pendulum_graph.png') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Parameters are given as follows. D and radius mean a diffusion constant and a radius of molecules, respectively. Dimensions of length and time are assumed to be micro-meter and second. Step2: Make a model for all algorithms. No birth reaction with more than one product is accepted. Step3: Save a result with ode as obs, and plot it Step4: Simulating with gillespie (Bars represent standard error of the mean) Step5: Simulating with meso Step6: Simulating with spatiocyte Step7: Simulating with egfrd Step8: Simulating with bd
<ASSISTANT_TASK:> Python Code: %matplotlib inline from ecell4.prelude import * D = 1 # 0.01 radius = 0.005 N = 20 # a number of samples y0 = {} # {'A': 60} duration = 3 V = 8 with species_attributes(): A | {'radius': radius, 'D': D} with reaction_rules(): ~A > A | 45.0 A > ~A | 1.5 m = get_model() ret1 = run_simulation(duration, y0=y0, volume=V, model=m) ret1 ret2 = ensemble_simulations(duration, ndiv=20, y0=y0, volume=V, model=m, solver='gillespie', repeat=N) ret2.plot('o', ret1, '-') ret2 = ensemble_simulations( duration, ndiv=20, y0=y0, volume=V, model=m, solver=('meso', Integer3(3, 3, 3), 0.25), repeat=N) ret2.plot('o', ret1, '-') ret2 = ensemble_simulations( duration, ndiv=20, y0=y0, volume=V, model=m, solver=('spatiocyte', radius), repeat=N) ret2.plot('o', ret1, '-') ret2 = ensemble_simulations( duration, ndiv=20, y0=y0, volume=V, model=m, solver=('egfrd', Integer3(8, 8, 8)), repeat=N) ret2.plot('o', ret1, '-') ret2 = ensemble_simulations( duration, ndiv=20, y0=y0, volume=V, model=m, solver=('bd', Integer3(8, 8, 8), 0.1), repeat=N) ret2.plot('o', ret1, '-') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Pregunta 2 Step2: Pregunta 4
<ASSISTANT_TASK:> Python Code: ##escriba la función aqui## horaValida('13:00:00') rut = input("ingrese su rut: ") ##su código va aqui## import random random.seed(int(rut)) ##su código va aqui## <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step3: STOCK PICKING 3.1 - FORECASTING ARIMAs Step4: ARIMA Step5: Massive Predictions Step6: Reloading full results Step7: Stock picking Step8: Notice that we should not buy SNN (Smith & Nephew PLC) because the predicted cumulative return is too small vs. the actual cumulative return. Is this reasonable? Step9: Note #2 Step10: Gain/Loss Step11: The percentage of mistakes would be
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import pandas_datareader.data as web import datetime def get_data(symbols, add_ref=True, data_source='yahoo', price='Adj Close', start='1/21/2010', end='4/15/2016'): Read stock data (adjusted close) for given symbols from. if add_ref and 'SPY' not in symbols: # add SPY for reference, if absent symbols.insert(0, 'SPY') df = web.DataReader(symbols, data_source=data_source, start=start, end=end) return df[price,:,:] def compute_daily_returns(df): Compute and return the daily return values. # Note: Returned DataFrame must have the same number of rows daily_returns = (df / df.shift(1)) - 1 daily_returns.ix[0,:] = 0 return daily_returns def fill_missing_values(df_data): Fill missing values in data frame, in place. df_data.fillna(method='ffill',inplace=True) df_data.fillna(method='backfill',inplace=True) return df_data def cumulative_returns(df): return df/df.ix[0,:] - 1 df = fill_missing_values(get_data(symbols=['GOOG','SPY','IBM','GLD'], start='4/21/2015', end='7/15/2016')) df.plot() plt.show(1) df.head() simbols = ["A","AA","AAL","AAP","AAPL","ABB","ABBV","ABC","ABMD","ABT","ABX","ACC","ACGL","ACM","ACN","ADBE","ADI","ADM","ADNT","ADP","ADS","ADSK","AEE","AEG","AEM","AEP","AER","AES","AET","AFG","AFL","AGCO","AGN","AGNC","AGR","AGU","AIG","AIV","AIZ","AJG","AKAM","ALB","ALGN","ALK","ALKS","ALL","ALLE","ALLY","ALSN","ALV","ALXN","AM","AMAT","AMD","AME","AMG","AMGN","AMH","AMP","AMT","AMTD","AMX","AMZN","ANET","ANSS","ANTM","AON","AOS","APA","APC","APD","APH","APO","AR","ARCC","ARD","ARE","ARMK","ARNC","ARRS","ARW","ASH","ASML","ASR","ASX","ATH","ATO","ATR","ATVI","AVB","AVGO","AVY","AWK","AXP","AXS","AXTA","AYI","AZN","AZO","BA","BABA","BAC","BAH","BAM","BAP","BAX","BBBY","BBD","BBL","BBRY","BBT","BBVA","BBY","BC","BCE","BCH","BCR","BCS","BDX","BEN","BERY","BF.B","BG","BHI","BHP","BIDU","BIIB","BIO","BIP","BIVV","BK","BKFS","BLK","BLL","BMA","BMO","BMRN","BMY","BNS","BOKF","BP","BPL","BPY","BR","BRCD","BRFS","BRK.A","BRO","BRX","BSAC","BSBR","BSMX","BSX","BT","BUD","BURL","BWA","BX","BXP","C","CA","CAG","CAH","CAJ","CAT","CB","CBG","CBOE","CBS","CBSH","CC","CCE","CCI","CCK","CCL","CDK","CDNS","CDW","CE","CELG","CEO","CERN","CF","CFG","CFR","CG","CGNX","CHA","CHD","CHK","CHKP","CHL","CHRW","CHT","CHTR","CHU","CI","CINF","CIT","CL","CLNS","CLR","CLX","CM","CMA","CMCSA","CME","CMG","CMI","CMS","CNA","CNC","CNHI","CNI","CNK","CNP","CNQ","COF","COG","COH","COHR","COL","COMM","COO","COP","COST","COTY","CP","CPA","CPB","CPL","CPRT","CPT","CRH","CRM","CS","CSCO","CSGP","CSL","CSX","CTAS","CTL","CTRP","CTSH","CTXS","CUK","CVE","CVS","CVX","CX","CXO","D","DAL","DB","DCI","DCM","DCP","DD","DE","DEI","DEO","DFS","DG","DGX","DHI","DHR","DIS","DISH","DKS","DLB","DLPH","DLR","DLTR","DNKN","DOV","DOW","DOX","DPS","DPZ","DRE","DRI","DTE","DUK","DVA","DVMT","DVN","DXC","DXCM","E","EA","EBAY","EC","ECA","ECL","ED","EDU","EEP","EFX","EGN","EIX","EL","ELS","EMN","EMR","ENB","ENBL","ENIA","ENIC","ENLK","EOCC","EOG","EPD","EPR","EQGP","EQIX","EQM","EQR","EQT","ERIC","ERIE","ES","ESLT","ESRX","ESS","ETE","ETFC","ETN","ETR","EV","EVHC","EW","EWBC","EXC","EXEL","EXPD","EXPE","EXR","F","FANG","FAST","FB","FBHS","FBR","FCE.A","FCX","FDC","FDS","FDX","FE","FFIV","FIS","FISV","FITB","FL","FLEX","FLIR","FLR","FLS","FLT","FMC","FMS","FMX","FNF","FOXA","FRC","FRT","FTI","FTNT","FTV","G","GD","GDDY","GE","GG","GGG","GGP","GIB","GIL","GILD","GIS","GLPI","GLW","GM","GNTX","GOLD","GOOGL","GPC","GPN","GPS","GRMN","GS","GSK","GT","GWW","GXP","H","HAL","HAS","HBAN","HBI","HCA","HCN","HCP","HD","HDB","HDS","HES","HFC","HHC","HIG","HII","HIW","HLF","HLT","HMC","HOG","HOLX","HON","HP","HPE","HPP","HPQ","HRB","HRL","HRS","HSBC","HSIC","HST","HSY","HTA","HTHT","HUBB","HUM","HUN","IAC","IBKR","IBM","IBN","ICE","IDXX","IEP","IEX","IFF","IHG","ILMN","INCY","INFO","INFY","ING","INGR","INTC","INTU","INVH","IONS","IP","IPG","IPGP","IR","IRM","ISRG","IT","ITUB","ITW","IVZ","IX","JAZZ","JBHT","JBL","JBLU","JD","JEC","JHX","JKHY","JLL","JNJ","JNPR","JPM","JWN","K","KAR","KB","KEP","KEY","KEYS","KHC","KIM","KKR","KLAC","KMB","KMI","KMX","KO","KORS","KR","KRC","KSS","KSU","KT","KYO","L","LAMR","LAZ","LB","LBTYA","LDOS","LEA","LECO","LEG","LEN","LFC","LFL","LH","LII","LKQ","LLL","LLY","LMT","LN","LNC","LNT","LOGI","LOGM","LOW","LPL","LPT","LRCX","LUK","LULU","LUV","LUX","LVLT","LVS","LW","LYB","LYG","LYV","M","MA","MAA","MAC","MAN","MAR","MAS","MAT","MBLY","MBT","MCD","MCHP","MCK","MCO","MD","MDLZ","MDT","MDU","MELI","MET","MFC","MFG","MGA","MGM","MHK","MIC","MIDD","MJN","MKC","MKL","MKTX","MLCO","MLM","MMC","MMM","MMP","MNST","MO","MOMO","MON","MOS","MPC","MPLX","MRK","MRO","MRVL","MS","MSCC","MSCI","MSFT","MSI","MSM","MT","MTB","MTD","MTN","MTU","MU","MXIM","MYL","NBL","NCLH","NCR","NDAQ","NDSN","NEE","NEM","NEU","NFLX","NFX","NGG","NI","NKE","NLSN","NLY","NMR","NNN","NOC","NOK","NOV","NOW","NRZ","NSC","NTAP","NTES","NTRS","NUAN","NUE","NVDA","NVO","NVR","NVS","NWL","NXPI","NYCB","O","OA","OAK","OC","ODFL","OGE","OHI","OKE","OKS","OLED","OLN","OMC","ON","ORAN","ORCL","ORI","ORLY","OSK","OTEX","OXY","OZRK","PAA","PAC","PACW","PAGP","PANW","PAYX","PBCT","PBR","PCAR","PCG","PCLN","PE","PEG","PEP","PF","PFE","PFG","PG","PGR","PH","PHG","PHI","PHM","PII","PK","PKG","PKI","PKX","PLD","PM","PNC","PNR","PNRA","PNW","POOL","POST","POT","PPC","PPG","PPL","PRGO","PRU","PSA","PSO","PSX","PSXP","PTC","PTR","PUK","PVH","PWR","PX","PXD","PYPL","Q","QCOM","QGEN","QRVO","QVCA","RACE","RAI","RBS","RCI","RCL","RDS.A","RDY","RE","REG","REGN","RELX","RENX","RF","RGA","RHI","RHT","RIO","RJF","RL","RMD","RNR","ROK","ROL","ROP","ROST","RPM","RRC","RS","RSG","RSPP","RTN","RY","RYAAY","S","SABR","SAN","SAP","SATS","SBAC","SBNY","SBS","SBUX","SCCO","SCG","SCHW","SCI","SEE","SEIC","SEP","SERV","SGEN","SHG","SHLX","SHOP","SHPG","SHW","SINA","SIRI","SIVB","SIX","SJM","SJR","SKM","SLB","SLF","SLG","SLM","SLW","SMFG","SMG","SMI","SNA","SNAP","SNE","SNI","SNN","SNP","SNPS","SNV","SNY","SO","SON","SPB","SPG","SPGI","SPLK","SPLS","SPR","SQ","SRCL","SRE","SSL","SSNC","ST","STE","STI","STLD","STM","STO","STT","STWD","STX","STZ","SU","SUI","SWK","SWKS","SYF","SYK","SYMC","SYT","SYY","T","TAL","TAP","TD","TDG","TEAM","TECK","TEF","TEL","TER","TEVA","TFX","TGNA","TGT","TI","TIF","TJX","TKC","TLK","TLLP","TM","TMK","TMO","TMUS","TOL","TOT","TRGP","TRI","TRIP","TRMB","TROW","TRP","TRQ","TRU","TRV","TS","TSCO","TSLA","TSM","TSN","TSO","TSRO","TSS","TSU","TTC","TTM","TTWO","TU","TV","TWTR","TWX","TXN","TXT","TYL","UAL","UBS","UDR","UGI","UGP","UHAL","UHS","UL","ULTA","ULTI","UMC","UN","UNH","UNM","UNP","UPS","URI","USB","USFD","UTHR","UTX","V","VAL","VALE","VAR","VEDL","VEEV","VEON","VER","VFC","VIAB","VIPS","VIV","VLO","VMC","VMW","VNO","VNTV","VOD","VOYA","VRSK","VRSN","VRTX","VTR","VZ","W","WAB","WAL","WAT","WB","WBA","WBC","WBK","WCG","WCN","WDAY","WDC","WEC","WES","WF","WFC","WFM","WFT","WGP","WHR","WIT","WLK","WLTW","WM","WMB","WMT","WOOF","WPC","WPPGY","WPZ","WR","WRB","WRK","WST","WTR","WU","WUBA","WY","WYN","WYNN","XEC","XEL","XL","XLNX","XOM","XPO","XRAY","XRX","XYL","Y","YHOO","YNDX","YPF","YUM","YUMC","ZAYO","ZBH","ZBRA","ZION","ZTO","ZTS"] len(simbols) DELTA = 45 ## delay in days start_date = (datetime.date.today() - datetime.timedelta(DELTA)).strftime("%m-%d-%Y") print("start_date",start_date) end_date = (datetime.date.today()).strftime("%m-%d-%Y") print("end_date",end_date) df = fill_missing_values(get_data(symbols=simbols, start=start_date, end=end_date)) df.shape df.head() pd.isnull(df).sum().sum() to_remove = pd.isnull(df).sum()[pd.isnull(df).sum() > 0] to_remove to_remove.index df = df.drop(to_remove.index,axis=1) pd.isnull(df).sum().sum() df.shape from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error from sklearn.metrics import r2_score ## let's start with an example series = df["AAPL"] series = series.tolist() pd.Series(series).plot() plt.show() p_tr = 0.66 tr_size = int(len(series) * p_tr) train, test = series[0:tr_size], series[tr_size:len(series)] print("tr_size:",tr_size,"xval_size:",(len(series)-tr_size)) from pandas import datetime from pandas import DataFrame from statsmodels.tsa.arima_model import ARIMA from matplotlib import pyplot # fit model model = ARIMA(train, order=(5,0,0)) model_fit = model.fit(disp=0) print(model_fit.summary()) # plot residual errors residuals = DataFrame(model_fit.resid) residuals.plot() pyplot.show() residuals.plot(kind='kde') pyplot.show() print(residuals.describe()) model_fit.aic from numpy.linalg import LinAlgError def get_best_arima(sr,maxord = [6,6,6]): best_aic = 1000000 best_ord = maxord best_model = None for p in range(maxord[0]): for q in range(maxord[1]): for d in range(maxord[2]): try: model = ARIMA(sr, order=(p,q,d)) model_fit = model.fit(disp=0) if (best_aic > model_fit.aic): best_aic = model_fit.aic best_ord = [p,q,d] best_model = model_fit except: pass return best_aic, best_ord , best_model # supress warnings import warnings warnings.filterwarnings('ignore') best_aic, best_ord , best_model = get_best_arima(train) print("best_aic:",best_aic) print("best_ord:",best_ord) def predict_arima(train,steps,best_order,verbose=True,do_plot=True): history = [x for x in train] predictions = list() yhat = train[len(train)-1] for t in range(steps): model = ARIMA(history, order=(best_order[0],best_order[1],best_order[2])) try: model_fit = model.fit(disp=0) output = model_fit.forecast() except: pass if not(np.isnan(output[0] )) and not(np.isinf(output[0])): yhat = np.asscalar(output[0]) predictions.append(yhat) history.append(yhat) return predictions predictions = predict_arima(train,len(test),best_ord,verbose=True,do_plot=True) MSE = mean_squared_error(test, predictions) print("MSE:",MSE) pyplot.plot(test , label="test data") pyplot.plot(predictions, color='red' , label="prediction") pyplot.legend() pyplot.show() def predict_arima_worse(train,steps,best_order,verbose=True,do_plot=True): history = [x for x in train] predictions = list() model = ARIMA(history, order=(best_order[0],best_order[1],best_order[2])) try: model_fit = model.fit(disp=0) output = model_fit.forecast(steps=steps) except: pass yhat = history[len(history)-1] for i in range(steps): if not(np.isnan(output[0][i] )) and not(np.isinf(output[0][i])): yhat = np.asscalar(output[0][i] ) predictions.append(yhat) return predictions predictions = predict_arima_worse(train,len(test),best_ord,verbose=True,do_plot=True) MSE = mean_squared_error(test, predictions) print("MSE:",MSE) pyplot.plot(test , label="test data") pyplot.plot(predictions, color='red' , label="prediction") pyplot.legend() pyplot.show() arima_perf = DataFrame({'security': df.columns.tolist(), 'cumulative_return_test': 0, 'ARIMA_pred_cumulative_return_test': 0, 'ARIMA_MSE_cumulative_return_test': 0, 'ARIMA_R2_cumulative_return_test': 0, 'ARIMA_MSE_price_test': 0 , 'ARIMA_R2_price_test': 0 , 'cumulative_return_xval': 0, 'ARIMA_pred_cumulative_return_xval': 0, 'ARIMA_MSE_cumulative_return_xval': 0, 'ARIMA_R2_cumulative_return_xval': 0, 'ARIMA_MSE_price_xval': 0 , 'ARIMA_R2_price_xval': 0 , 'ARIMA_best_order_0': 0, 'ARIMA_best_order_1': 0, 'ARIMA_best_order_2': 0} ) arima_perf = arima_perf.set_index(['security']) p_tr = 0.60 p_xval = 0.20 p_test = 1-p_tr-p_xval for i,sec in enumerate(arima_perf.index.tolist()): if (i % 100 == 0) or (i ==10): print(i,sec) ## data series = df[sec] series = series.tolist() tr_size = int(len(series) * p_tr) xval_size = int(len(series) * p_xval) train, txval, test = series[0:tr_size], series[tr_size:(tr_size+xval_size)] , series[(tr_size+xval_size):len(series)] ## fit model best_aic, best_ord , best_model = get_best_arima(train) ## predict, assess predictions = predict_arima(train,(len(txval)+len(test)),best_ord,verbose=False,do_plot=False) ## store arima_perf.loc[sec,'ARIMA_best_order_0'] = best_ord[0] arima_perf.loc[sec,'ARIMA_best_order_1'] = best_ord[1] arima_perf.loc[sec,'ARIMA_best_order_2'] = best_ord[2] # xval pred_cumulative_returns_xval = cumulative_returns(pd.Series(predictions[0:xval_size])) cumulative_returns_xval = cumulative_returns(pd.Series(txval)) arima_perf.loc[sec,'cumulative_return_xval'] = cumulative_returns_xval[len(cumulative_returns_xval)-1] arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval'] = pred_cumulative_returns_xval[len(pred_cumulative_returns_xval)-1] arima_perf.loc[sec,'ARIMA_MSE_cumulative_return_xval'] = mean_squared_error(cumulative_returns_xval, pred_cumulative_returns_xval) arima_perf.loc[sec,'ARIMA_R2_cumulative_return_xval'] = r2_score(cumulative_returns_xval, pred_cumulative_returns_xval) arima_perf.loc[sec,'ARIMA_MSE_price_xval'] = mean_squared_error(txval, predictions[0:xval_size]) arima_perf.loc[sec,'ARIMA_R2_price_xval'] = r2_score(txval, predictions[0:xval_size]) # test pred_cumulative_returns_test = cumulative_returns(pd.Series(predictions[xval_size:])) cumulative_returns_test = cumulative_returns(pd.Series(test)) arima_perf.loc[sec,'cumulative_return_test'] = cumulative_returns_test[len(cumulative_returns_test)-1] arima_perf.loc[sec,'ARIMA_pred_cumulative_return_test'] = pred_cumulative_returns_test[len(pred_cumulative_returns_test)-1] arima_perf.loc[sec,'ARIMA_MSE_cumulative_return_test'] = mean_squared_error(cumulative_returns_test, pred_cumulative_returns_test) arima_perf.loc[sec,'ARIMA_R2_cumulative_return_test'] = r2_score(cumulative_returns_test, pred_cumulative_returns_test) arima_perf.loc[sec,'ARIMA_MSE_price_test'] = mean_squared_error(test, predictions[xval_size:]) arima_perf.loc[sec,'ARIMA_R2_price_test'] = r2_score(test, predictions[xval_size:]) arima_perf.sort_values(by='ARIMA_MSE_price_test' , ascending=False).head(5) #arima_perf.to_csv('data/arima_perf.csv') arima_perf = pd.read_csv('data/arima_perf.csv') arima_perf = arima_perf.set_index('security') arima_perf.sort_values(by='ARIMA_R2_cumulative_return_xval' , ascending=False).head(10) arima_perf['ACTION'] = '' for i,sec in enumerate(arima_perf.index.tolist()): if arima_perf.loc[sec,'ARIMA_R2_cumulative_return_xval'] > 0.65: if arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval'] > 0 and arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval']/arima_perf.loc[sec,'cumulative_return_xval'] >= 0.7 and arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval']/arima_perf.loc[sec,'cumulative_return_xval'] <= 2: arima_perf.loc[sec,'ACTION'] = 'BUY' if arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval'] < 0 and arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval']/arima_perf.loc[sec,'cumulative_return_xval'] >= 0.7 and arima_perf.loc[sec,'ARIMA_pred_cumulative_return_xval']/arima_perf.loc[sec,'cumulative_return_xval'] <= 2: arima_perf.loc[sec,'ACTION'] = 'SELL' arima_perf = arima_perf.sort_values(by='ARIMA_R2_cumulative_return_xval' , ascending=False) arima_perf[['ACTION','ARIMA_R2_cumulative_return_xval','ARIMA_pred_cumulative_return_xval','cumulative_return_xval']][:20] arima_perf = arima_perf.sort_values(by='ARIMA_pred_cumulative_return_xval' , ascending=False) loss = arima_perf[['ACTION','ARIMA_R2_cumulative_return_xval','ARIMA_pred_cumulative_return_xval','cumulative_return_xval']][:20] loss['UNEXPECTED_LOSS'] = loss['cumulative_return_xval'] - loss['ARIMA_pred_cumulative_return_xval'] loss arima_perf = arima_perf.sort_values(by='ARIMA_MSE_cumulative_return_xval' , ascending=True) flat = arima_perf[['ACTION','ARIMA_R2_cumulative_return_xval','ARIMA_MSE_cumulative_return_xval','ARIMA_pred_cumulative_return_xval','cumulative_return_xval']][:20] flat arima_perf = arima_perf.sort_values(by='ARIMA_R2_cumulative_return_xval' , ascending=False) gain_loss = arima_perf[arima_perf['ACTION'] != ''][['ACTION','ARIMA_R2_cumulative_return_test','ARIMA_pred_cumulative_return_test','cumulative_return_test']] gain_loss['EX_POST'] = '' for i,sec in enumerate(gain_loss.index.tolist()): if gain_loss.loc[sec,'cumulative_return_test'] * gain_loss.loc[sec,'ARIMA_pred_cumulative_return_test'] < 0: gain_loss.loc[sec,'EX_POST'] = 'WRONG' elif np.absolute(gain_loss.loc[sec,'cumulative_return_test']) < np.absolute(gain_loss.loc[sec,'ARIMA_pred_cumulative_return_test']): gain_loss.loc[sec,'EX_POST'] = 'ALMOST CORRECT' else: gain_loss.loc[sec,'EX_POST'] = 'CORRECT' gain_loss gain_loss[gain_loss['EX_POST'] == 'WRONG'].shape[0]/gain_loss.shape[0] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercise 1 Step2: Exercise 2 Step3: Exercise 3 Step4: b. Confidence Intervals. Step5: Exercise 4
<ASSISTANT_TASK:> Python Code: # Useful Functions class DiscreteRandomVariable: def __init__(self, a=0, b=1): self.variableType = "" self.low = a self.high = b return def draw(self, numberOfSamples): samples = np.random.randint(self.low, self.high, numberOfSamples) return samples class BinomialRandomVariable(DiscreteRandomVariable): def __init__(self, numberOfTrials = 10, probabilityOfSuccess = 0.5): self.variableType = "Binomial" self.numberOfTrials = numberOfTrials self.probabilityOfSuccess = probabilityOfSuccess return def draw(self, numberOfSamples): samples = np.random.binomial(self.numberOfTrials, self.probabilityOfSuccess, numberOfSamples) return samples def factorial(n):return reduce(lambda x,y:x*y,[1]+range(1,n+1)) # Useful Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import statsmodels.stats as stats from statsmodels.stats import stattools from __future__ import division # Histograms with 10 tosses. ## Your code goes here plt.xlabel('Value') plt.ylabel('Occurences') plt.legend(['Coin Tosses']); # Histograms with 1000000 tosses. ## Your code goes here plt.xlabel('Value') plt.ylabel('Occurences') plt.legend(['Coin Tosses']); # Binomial distribution with p=0.25 and n=20 ## Your code goes here. plt.title('Binomial Distributino with p=0.25 and n=20') plt.xlabel('Value') plt.ylabel('Occurences') plt.legend(['Die Rolls']); # Finding x which occurs most often ## Your code goes here # Calculating the probability of finding x. ## Your code goes here # Graphin a normal distribution pdf. ## Your code goes here mu = sigma = x = np.linspace(-30, 30, 200) y = plt.plot(x, y) plt.title('Graph of PDF with mu = 0 and sigma = 5') plt.xlabel('Value') plt.ylabel('Probability'); # finding the 1st, 2nd, and third confidence intervals. ## Your code goes here first_ci = second_ci = third_ci = print '1-sigma -> mu +/-', sigma print '2-sigma -> mu +/-', second_ci[1] print '3-sigma -> mu +/-', third_ci[1] ## Graphing. ## Your code goes here. plt.title('Graph of PDF with 3 confidence intervals.') plt.legend(); # Collect prices and retursn. prices = get_pricing('SPY', start_date = '2016-01-01', end_date='2016-05-01', fields = 'price') returns = prices.pct_change()[1:] # Calculating the mean and standard deviation. ## Your code goes here sample_mean = sample_std_dev = x = np.linspace(-(sample_mean + 4 * sample_std_dev), (sample_mean + 4 * sample_std_dev), len(returns)) sample_distribution = ((1/(sample_std_dev * 2 * np.pi)) * np.exp(-(x - sample_mean)*(x - sample_mean) / (2 * sample_std_dev * sample_std_dev))) # Plotting histograms and confidence intervals. ## Your code goes here plt.title('Graph of returns with fitted PDF and the 3 confidence intervals. ') plt.legend(); # Run the JB test for normality. ## Your code goes here print "The JB test p-value is: ", p_value print "We reject the hypothesis that the data are normally distributed ", p_value < cutoff print "The skewness of the returns is: ", skewness print "The kurtosis of the returns is: ", kurtosis <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Request Data Step3: Now that we have a function, we can run a query like this Step4: Pandas Dataframes Step5: Additional operations Step6: Ordering the data Step7: Grouping the data Step9: Reset Scored Connections Step10: Sandbox
<ASSISTANT_TASK:> Python Code: import datetime import pandas as pd import numpy as np import linecache, bisect import os spath = os.getcwd() path = spath.split("/") date = path[len(path)-1] def makeGraphqlRequest(query, variables): return GraphQLClient.request(query, variables) suspicious_query = query($date:SpotDateType) { flow { suspicious(date:$date) { srcIp dstIp srcPort dstPort score srcIp_domain dstIp_rep protocol outBytes inPkts srcIp_rep inBytes srcIp_isInternal rank dstIp_geoloc tstart outPkts dstIp_isInternal dstIp_domain } } } ##If you want to use a different date for your query, switch the ##commented/uncommented following lines variables={ 'date': datetime.datetime.strptime(date, '%Y%m%d').strftime('%Y-%m-%d') # 'date': "2016-10-08" } suspicious_request = makeGraphqlRequest(suspicious_query,variables) ##The variable suspicious_request will contain the resulting data from the query. results = suspicious_request['data']['flow']['suspicious'] df = pd.read_json(json.dumps(results)) ##Printing only the selected column list from the dataframe ##By default it will only print the first 15 results print df[['srcIp','dstIp','srcPort','dstPort','score']] ##Filter results where the destination port = 3389 ##The resulting data will be stored in df2 df2 = df[df['dstPort'].isin(['3389'])] print df2[['srcIp','dstIp','srcPort','dstPort','score']] srtd = df.sort_values(by="rank") print srtd[['rank','srcIp','dstIp','srcPort','dstPort','score']] ## This command will group the results by pairs of source-destination IP ## summarizing all other columns grpd = df.groupby(['srcIp','dstIp']).sum() ## This will print the resulting dataframe displaying the input and output bytes columnns print grpd[["inBytes","inPkts"]] # reset_scores = mutation($date:SpotDateType!) { # flow{ # resetScoredConnections(date:$date){ # success # } # } # } # variables={ # 'date': datetime.datetime.strptime(date, '%Y%m%d').strftime('%Y-%m-%d') # } # request = makeGraphqlRequest(reset_scores,variables) # print request['data']['flow']['resetScoredConnections ']['success'] #Your code here <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As always, let's do imports and initialize a logger and a new Bundle. See Building a System for more details. Step2: Dataset Parameters Step3: times Step4: Compute Options Step5: dynamics_method Step6: The 'dynamics_method' parameter controls how stars and components are placed in the coordinate system as a function of time and has several choices Step7: The 'ltte' parameter sets whether light travel time effects (Roemer delay) are included. If set to False, the positions and velocities are returned as they actually are for that given object at that given time. If set to True, they are instead returned as they were or will be when their light reaches the origin of the coordinate system. Step8: Plotting Step9: As always, you have access to any of the arrays for either axes, so if you want to plot 'vus' vs 'times' Step10: We can also plot the orbit in 3D.
<ASSISTANT_TASK:> Python Code: !pip install -I "phoebe>=2.1,<2.2" %matplotlib inline import phoebe from phoebe import u # units import numpy as np import matplotlib.pyplot as plt logger = phoebe.logger() b = phoebe.default_binary() b.add_dataset('orb') print b.filter(kind='orb') print b['times'] print b['compute'] print b['dynamics_method'] print b['ltte'] b.set_value_all('times', np.linspace(0,3,201)) b.run_compute() b['orb@model'].twigs print b['times@primary@orb01@orb@model'] print b['us@primary@orb01@orb@model'] print b['vus@primary@orb01@orb@model'] afig, mplfig = b['orb@model'].plot(show=True) afig, mplfig = b['orb@model'].plot(x='times', y='vus', show=True) afig, mplfig = b['orb@model'].plot(projection='3d', xlim=(-4,4), ylim=(-4,4), zlim=(-4,4), show=True) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Document Authors Step2: Document Contributors Step3: Document Publication Step4: Document Table of Contents Step5: 1.2. Model Name Step6: 1.3. Scheme Scope Step7: 1.4. Basic Approximations Step8: 1.5. Prognostic Variables Form Step9: 1.6. Number Of Tracers Step10: 1.7. Family Approach Step11: 2. Key Properties --&gt; Software Properties Step12: 2.2. Code Version Step13: 2.3. Code Languages Step14: 3. Key Properties --&gt; Timestep Framework Step15: 3.2. Split Operator Advection Timestep Step16: 3.3. Split Operator Physical Timestep Step17: 3.4. Integrated Timestep Step18: 3.5. Integrated Scheme Type Step19: 4. Key Properties --&gt; Meteorological Forcings Step20: 4.2. Variables 2D Step21: 4.3. Frequency Step22: 5. Key Properties --&gt; Resolution Step23: 5.2. Canonical Horizontal Resolution Step24: 5.3. Number Of Horizontal Gridpoints Step25: 5.4. Number Of Vertical Levels Step26: 5.5. Is Adaptive Grid Step27: 6. Key Properties --&gt; Tuning Applied Step28: 6.2. Global Mean Metrics Used Step29: 6.3. Regional Metrics Used Step30: 6.4. Trend Metrics Used Step31: 7. Transport Step32: 7.2. Scheme Step33: 7.3. Mass Conservation Scheme Step34: 7.4. Convention Step35: 8. Emissions Step36: 8.2. Method Step37: 8.3. Sources Step38: 8.4. Prescribed Climatology Step39: 8.5. Prescribed Climatology Emitted Species Step40: 8.6. Prescribed Spatially Uniform Emitted Species Step41: 8.7. Interactive Emitted Species Step42: 8.8. Other Emitted Species Step43: 8.9. Other Method Characteristics Step44: 9. Concentrations Step45: 9.2. Prescribed Lower Boundary Step46: 9.3. Prescribed Upper Boundary Step47: 9.4. Prescribed Fields Mmr Step48: 9.5. Prescribed Fields Mmr Step49: 10. Optical Radiative Properties Step50: 11. Optical Radiative Properties --&gt; Absorption Step51: 11.2. Dust Step52: 11.3. Organics Step53: 12. Optical Radiative Properties --&gt; Mixtures Step54: 12.2. Internal Step55: 12.3. Mixing Rule Step56: 13. Optical Radiative Properties --&gt; Impact Of H2o Step57: 13.2. Internal Mixture Step58: 14. Optical Radiative Properties --&gt; Radiative Scheme Step59: 14.2. Shortwave Bands Step60: 14.3. Longwave Bands Step61: 15. Optical Radiative Properties --&gt; Cloud Interactions Step62: 15.2. Twomey Step63: 15.3. Twomey Minimum Ccn Step64: 15.4. Drizzle Step65: 15.5. Cloud Lifetime Step66: 15.6. Longwave Bands Step67: 16. Model Step68: 16.2. Processes Step69: 16.3. Coupling Step70: 16.4. Gas Phase Precursors Step71: 16.5. Scheme Type Step72: 16.6. Bulk Scheme Species
<ASSISTANT_TASK:> Python Code: # DO NOT EDIT ! from pyesdoc.ipython.model_topic import NotebookOutput # DO NOT EDIT ! DOC = NotebookOutput('cmip6', 'bnu', 'sandbox-1', 'aerosol') # Set as follows: DOC.set_author("name", "email") # TODO - please enter value(s) # Set as follows: DOC.set_contributor("name", "email") # TODO - please enter value(s) # Set publication status: # 0=do not publish, 1=publish. DOC.set_publication_status(0) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.model_name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.scheme_scope') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "troposhere" # "stratosphere" # "mesosphere" # "mesosphere" # "whole atmosphere" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.basic_approximations') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.prognostic_variables_form') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "3D mass/volume ratio for aerosols" # "3D number concenttration for aerosols" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.number_of_tracers') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.family_approach') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.repository') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_version') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.software_properties.code_languages') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.method') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses atmospheric chemistry time stepping" # "Specific timestepping (operator splitting)" # "Specific timestepping (integrated)" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_advection_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.split_operator_physical_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_timestep') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.timestep_framework.integrated_scheme_type') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Explicit" # "Implicit" # "Semi-implicit" # "Semi-analytic" # "Impact solver" # "Back Euler" # "Newton Raphson" # "Rosenbrock" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_3D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.variables_2D') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.meteorological_forcings.frequency') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.name') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.canonical_horizontal_resolution') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_horizontal_gridpoints') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.number_of_vertical_levels') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.resolution.is_adaptive_grid') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.description') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.global_mean_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.regional_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.key_properties.tuning_applied.trend_metrics_used') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.scheme') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Specific transport scheme (eulerian)" # "Specific transport scheme (semi-lagrangian)" # "Specific transport scheme (eulerian and semi-lagrangian)" # "Specific transport scheme (lagrangian)" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.mass_conservation_scheme') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Mass adjustment" # "Concentrations positivity" # "Gradients monotonicity" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.transport.convention') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Uses Atmospheric chemistry transport scheme" # "Convective fluxes connected to tracers" # "Vertical velocities connected to tracers" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.method') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "None" # "Prescribed (climatology)" # "Prescribed CMIP6" # "Prescribed above surface" # "Interactive" # "Interactive above surface" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.sources') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Vegetation" # "Volcanos" # "Bare ground" # "Sea surface" # "Lightning" # "Fires" # "Aircraft" # "Anthropogenic" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # Valid Choices: # "Constant" # "Interannual" # "Annual" # "Monthly" # "Daily" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_climatology_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.prescribed_spatially_uniform_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.interactive_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_emitted_species') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.emissions.other_method_characteristics') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_lower_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_upper_boundary') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.concentrations.prescribed_fields_mmr') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.black_carbon') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.dust') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.absorption.organics') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.external') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.internal') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.mixtures.mixing_rule') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.size') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.impact_of_h2o.internal_mixture') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.shortwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.radiative_scheme.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.twomey_minimum_ccn') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.drizzle') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.cloud_lifetime') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # Valid Choices: # True # False # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.optical_radiative_properties.cloud_interactions.longwave_bands') # PROPERTY VALUE: # Set as follows: DOC.set_value(value) # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.overview') # PROPERTY VALUE: # Set as follows: DOC.set_value("value") # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.processes') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Dry deposition" # "Sedimentation" # "Wet deposition (impaction scavenging)" # "Wet deposition (nucleation scavenging)" # "Coagulation" # "Oxidation (gas phase)" # "Oxidation (in cloud)" # "Condensation" # "Ageing" # "Advection (horizontal)" # "Advection (vertical)" # "Heterogeneous chemistry" # "Nucleation" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.coupling') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Radiation" # "Land surface" # "Heterogeneous chemistry" # "Clouds" # "Ocean" # "Cryosphere" # "Gas phase chemistry" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.gas_phase_precursors') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "DMS" # "SO2" # "Ammonia" # "Iodine" # "Terpene" # "Isoprene" # "VOC" # "NOx" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.scheme_type') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Bulk" # "Modal" # "Bin" # "Other: [Please specify]" # TODO - please enter value(s) # PROPERTY ID - DO NOT EDIT ! DOC.set_id('cmip6.aerosol.model.bulk_scheme_species') # PROPERTY VALUE(S): # Set as follows: DOC.set_value("value") # Valid Choices: # "Sulphate" # "Nitrate" # "Sea salt" # "Dust" # "Ice" # "Organic" # "Black carbon / soot" # "SOA (secondary organic aerosols)" # "POM (particulate organic matter)" # "Polar stratospheric ice" # "NAT (Nitric acid trihydrate)" # "NAD (Nitric acid dihydrate)" # "STS (supercooled ternary solution aerosol particule)" # "Other: [Please specify]" # TODO - please enter value(s) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: As with previous notebooks we will use an action selection function to give us an exploration strategy. Feel free to change this function and play with it to see what happens. For now, let me just provide a couple function. Step2: Did you see that neuro_q_learning function??? I had to add comments to this one to make it easier to understand. There are a couple of things that you might want to read about. Check out the "Further reading" sections on the README.md files for that. Step4: Hope you enjoyed your vacations. Step5: Let's close up the environment and upload (in case you want to). Step6: Now, let's look at some of the statistics Step8: Cool, not bad at all! Step9: Your turn Step10: Let's test thing puppy. Step12: Wake upp!!! Step13: You happy with it????? Are you sure???? Step15: How about running your fully-trained greedy agent?
<ASSISTANT_TASK:> Python Code: import numpy as np import pandas as pd import matplotlib.pyplot as plt import tempfile import base64 import pprint import random import json import sys import gym import io from gym import wrappers from collections import deque from subprocess import check_output from IPython.display import HTML from keras.models import Sequential from keras.layers import Dense from keras.optimizers import Adam def action_selection(state, model, episode, n_episodes): epsilon = 0.99 if episode < n_episodes//4 else 0.33 if episode < n_episodes//2 else 0. values = model.predict(state.reshape(1, state.shape[0]))[0] if np.random.random() < epsilon: action = np.random.randint(len(values)) else: action = np.argmax(values) return action, epsilon def neuro_q_learning(env, gamma = 0.99): nS = env.observation_space.shape[0] nA = env.env.action_space.n # memory bank memory_bank = deque() memory_bank_size = 100000 # function approximator model = Sequential() model.add(Dense(64, input_dim=nS, activation='relu')) model.add(Dense(nA, activation='linear')) model.compile(loss='mse', optimizer='adam') # constant values n_episodes = 50000 batch_size = 256 training_frequency = 20 # for statistics epsilons = [] states = [] actions = [] # interactions for episode in range(n_episodes): state = env.reset() done = False # each episode while not done: states.append(state) # select action action, epsilon = action_selection(state, model, episode, n_episodes) epsilons.append(epsilon) actions.append(action) # save history in memory bank nstate, reward, done, info = env.step(action) memory_bank.append((state, action, reward, nstate, done)) if len(memory_bank) > memory_bank_size: memory_bank.popleft() # iterate to next state state = nstate # only every few episodes enter training and update neural network weights if episode % training_frequency == 0 and len(memory_bank) == memory_bank_size: # randomly select batches of samples from the history # for training to prevent values spiking due to high # correlation of sequential values minibatch = np.array(random.sample(memory_bank, batch_size)) # extract values by type from the minibatch state_batch = np.array(minibatch[:,0].tolist()) action_batch = np.array(minibatch[:,1].tolist()) rewards_batch = np.array(minibatch[:,2].tolist()) state_prime_batch = np.array(minibatch[:,3].tolist()) is_terminal_batch = np.array(minibatch[:,4].tolist()) # use the current neural network to predict # current state values and next state values state_value_batch = model.predict(state_batch) next_state_value_batch = model.predict(state_prime_batch) # update the state values given the batch for i in range(len(minibatch)): if is_terminal_batch[i]: state_value_batch[i, action_batch[i]] = rewards_batch[i] else: state_value_batch[i, action_batch[i]] = rewards_batch[i] + gamma * np.max(next_state_value_batch[i]) # update the neural network weights model.train_on_batch(state_batch, state_value_batch) return model, (epsilons, states, actions) mdir = tempfile.mkdtemp() env = gym.make('CartPole-v0') env = wrappers.Monitor(env, mdir, force=True) model, stats = neuro_q_learning(env) videos = np.array(env.videos) n_videos = 4 idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) videos = videos[idxs,:] strm = '' for video_path, meta_path in videos: video = io.open(video_path, 'r+b').read() encoded = base64.b64encode(video) with open(meta_path) as data_file: meta = json.load(data_file) html_tag = <h2>{0}<h2/> <video width="960" height="540" controls> <source src="data:video/mp4;base64,{1}" type="video/mp4" /> </video> strm += html_tag.format('Episode ' + str(meta['episode_id']), encoded.decode('ascii')) HTML(data=strm) env.close() gym.upload(mdir, api_key='<YOUR API KEY>') epsilons, states, actions = stats plt.plot(np.arange(len(epsilons)), epsilons, '.') hist, bins = np.histogram(actions, bins=3) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align='center', width=width) plt.show() mdir = tempfile.mkdtemp() env = gym.make('CartPole-v0') env = wrappers.Monitor(env, mdir, force=True) for episode in range(100): state = env.reset() done = False while not done: action = np.argmax(model.predict(state.reshape(1, 4))[0]) nstate, reward, done, info = env.step(action) state = nstate videos = np.array(env.videos) n_videos = 3 idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) videos = videos[idxs,:] strm = '' for video_path, meta_path in videos: video = io.open(video_path, 'r+b').read() encoded = base64.b64encode(video) with open(meta_path) as data_file: meta = json.load(data_file) html_tag = <h2>{0}<h2/> <video width="960" height="540" controls> <source src="data:video/mp4;base64,{1}" type="video/mp4" /> </video> strm += html_tag.format('Episode ' + str(meta['episode_id']), encoded.decode('ascii')) HTML(data=strm) env.close() gym.upload(mdir, api_key='<YOUR API KEY>') def action_selection(state, model, episode, n_episodes): epsilon = 0.99 if episode < n_episodes//4 else 0.33 if episode < n_episodes//2 else 0. values = model.predict(state.reshape(1, 4))[0] if np.random.random() < epsilon: action = np.random.randint(len(values)) else: action = np.argmax(values) return action, epsilon def neuro_q_learning(env, gamma = 0.99): nS = env.observation_space.shape[0] nA = env.env.action_space.n # memory bank memory_bank = deque() memory_bank_size = 100000 # function approximator #### THIS IS A WEAK NEURAL NETWORK #### CAN YOU HELP THE AGENT LEARN MORE #### COMPLEX OBSERVATIONS????? model = Sequential() model.add(Dense(64, input_dim=nS, activation='relu')) model.add(Dense(nA, activation='linear')) model.compile(loss='mse', optimizer='adam') # constant values n_episodes = 50000 batch_size = 256 training_frequency = 20 # for statistics epsilons = [] states = [] actions = [] # interactions for episode in range(n_episodes): state = env.reset() done = False # each episode while not done: states.append(state) # select action action, epsilon = action_selection(state, model, episode, n_episodes) epsilons.append(epsilon) actions.append(action) # save history in memory bank nstate, reward, done, info = env.step(action) memory_bank.append((state, action, reward, nstate, done)) if len(memory_bank) > memory_bank_size: memory_bank.popleft() # iterate to next state state = nstate # only every few episodes enter training and update neural network weights if episode % training_frequency == 0 and len(memory_bank) == memory_bank_size: # randomly select batches of samples from the history # for training to prevent values spiking due to high # correlation of sequential values minibatch = np.array(random.sample(memory_bank, batch_size)) # extract values by type from the minibatch state_batch = np.array(minibatch[:,0].tolist()) action_batch = np.array(minibatch[:,1].tolist()) rewards_batch = np.array(minibatch[:,2].tolist()) state_prime_batch = np.array(minibatch[:,3].tolist()) is_terminal_batch = np.array(minibatch[:,4].tolist()) # use the current neural network to predict # current state values and next state values state_value_batch = model.predict(state_batch) next_state_value_batch = model.predict(state_prime_batch) # update the state values given the batch for i in range(len(minibatch)): if is_terminal_batch[i]: state_value_batch[i, action_batch[i]] = rewards_batch[i] else: state_value_batch[i, action_batch[i]] = rewards_batch[i] + gamma * np.max(next_state_value_batch[i]) # update the neural network weights model.train_on_batch(state_batch, state_value_batch) return model, (epsilons, states, actions) mdir = tempfile.mkdtemp() env = gym.make('CartPole-v0') env = wrappers.Monitor(env, mdir, force=True) model, stats = neuro_q_learning(env) videos = np.array(env.videos) n_videos = 4 idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) videos = videos[idxs,:] strm = '' for video_path, meta_path in videos: video = io.open(video_path, 'r+b').read() encoded = base64.b64encode(video) with open(meta_path) as data_file: meta = json.load(data_file) html_tag = <h2>{0}<h2/> <video width="960" height="540" controls> <source src="data:video/mp4;base64,{1}" type="video/mp4" /> </video> strm += html_tag.format('Episode ' + str(meta['episode_id']), encoded.decode('ascii')) HTML(data=strm) env.close() gym.upload(mdir, api_key='<YOUR API KEY>') epsilons, states, actions = stats plt.plot(np.arange(len(epsilons)), epsilons, '.') hist, bins = np.histogram(actions, bins=3) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align='center', width=width) plt.show() mdir = tempfile.mkdtemp() env = gym.make('CartPole-v0') env = wrappers.Monitor(env, mdir, force=True) for episode in range(100): state = env.reset() done = False while not done: action = np.argmax(model.predict(state.reshape(1, 4))[0]) nstate, reward, done, info = env.step(action) state = nstate videos = np.array(env.videos) n_videos = 3 idxs = np.linspace(0, len(videos) - 1, n_videos).astype(int) videos = videos[idxs,:] strm = '' for video_path, meta_path in videos: video = io.open(video_path, 'r+b').read() encoded = base64.b64encode(video) with open(meta_path) as data_file: meta = json.load(data_file) html_tag = <h2>{0}<h2/> <video width="960" height="540" controls> <source src="data:video/mp4;base64,{1}" type="video/mp4" /> </video> strm += html_tag.format('Episode ' + str(meta['episode_id']), encoded.decode('ascii')) HTML(data=strm) env.close() gym.upload(mdir, api_key='<YOUR API KEY>') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Initial set-up Step2: Combine model and experiments to produce Step3: Set up prior ranges for each parameter in the model. Step4: Run ABC calibration Step5: Results analysis
<ASSISTANT_TASK:> Python Code: import os, tempfile import logging import matplotlib as mpl import matplotlib.pyplot as plt import seaborn as sns import numpy as np from ionchannelABC import theoretical_population_size from ionchannelABC import IonChannelDistance, EfficientMultivariateNormalTransition, IonChannelAcceptor from ionchannelABC.experiment import setup from ionchannelABC.visualization import plot_sim_results, plot_kde_matrix_custom import myokit from pyabc import Distribution, RV, History, ABCSMC from pyabc.epsilon import MedianEpsilon from pyabc.sampler import MulticoreEvalParallelSampler, SingleCoreSampler from pyabc.populationstrategy import ConstantPopulationSize from experiments.ina_sakakibara import (sakakibara_act_nyg_adjust, sakakibara_inact_nyg_adjust, sakakibara_inact_kin_nyg_adjust, sakakibara_rec_nyg_adjust) from experiments.ina_schneider import schneider_taum_nyg_adjust modelfile = 'models/standardised_ina.mmt' observations, model, summary_statistics = setup(modelfile, sakakibara_act_nyg_adjust, sakakibara_inact_nyg_adjust, schneider_taum_nyg_adjust, sakakibara_inact_kin_nyg_adjust, sakakibara_rec_nyg_adjust) assert len(observations)==len(summary_statistics(model({}))) g = plot_sim_results(modelfile, sakakibara_act_nyg_adjust, schneider_taum_nyg_adjust, sakakibara_inact_nyg_adjust, sakakibara_inact_kin_nyg_adjust, sakakibara_rec_nyg_adjust) limits = {'log_ina.A': (0., 1.), 'log_ina.p_1': (1., 5.), 'ina.p_2': (1e-7, 0.2), 'log_ina.p_3': (-3., 1.), 'ina.p_4': (1e-7, 0.4), 'log_ina.p_5': (-1., 3.), 'ina.p_6': (1e-7, 0.2), 'log_ina.p_7': (-4., 0.), 'ina.p_8': (1e-7, 0.2)} prior = Distribution(**{key: RV("uniform", a, b - a) for key, (a,b) in limits.items()}) # Test this works correctly with set-up functions assert len(observations) == len(summary_statistics(model(prior.rvs()))) db_path = ("sqlite:///" + os.path.join(tempfile.gettempdir(), "standardised_ina_unified.db")) logging.basicConfig() abc_logger = logging.getLogger('ABC') abc_logger.setLevel(logging.DEBUG) eps_logger = logging.getLogger('Epsilon') eps_logger.setLevel(logging.DEBUG) pop_size = theoretical_population_size(2, len(limits)) print("Theoretical minimum population size is {} particles".format(pop_size)) abc = ABCSMC(models=model, parameter_priors=prior, distance_function=IonChannelDistance( exp_id=list(observations.exp_id), variance=list(observations.variance), delta=0.05), population_size=ConstantPopulationSize(1000), summary_statistics=summary_statistics, transitions=EfficientMultivariateNormalTransition(), eps=MedianEpsilon(initial_epsilon=100), sampler=MulticoreEvalParallelSampler(n_procs=16), acceptor=IonChannelAcceptor()) obs = observations.to_dict()['y'] obs = {str(k): v for k, v in obs.items()} abc_id = abc.new(db_path, obs) history = abc.run(minimum_epsilon=0., max_nr_populations=100, min_acceptance_rate=0.01) history = abc.run(minimum_epsilon=0., max_nr_populations=100, min_acceptance_rate=0.01) history = History(db_path) history.all_runs() # most recent is relevant df, w = history.get_distribution( m=0) df.describe() sns.set_context('poster') mpl.rcParams['font.size'] = 14 mpl.rcParams['legend.fontsize'] = 14 g = plot_sim_results(modelfile, sakakibara_act_nyg_adjust, schneider_taum_nyg_adjust, sakakibara_inact_nyg_adjust, sakakibara_inact_kin_nyg_adjust, sakakibara_rec_nyg_adjust, df=df, w=w) plt.tight_layout() m,_,_ = myokit.load(modelfile) sns.set_context('paper') g = plot_kde_matrix_custom(df, w, limits=limits) plt.tight_layout() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Create a survey plan Step3: Transient model Step4: Transient Generator Step5: Number of injections, you can fix the number of generated transients or follow a rate. Rate should always be specified even for ntransient != None. Step6: SimulSurvey Step7: Save Step8: Output
<ASSISTANT_TASK:> Python Code: import os home_dir = os.getcwd() # Please enter the path to where you have placed the Schlegel, Finkbeiner & Davis (1998) dust map files # You can also set the environment variable SFD_DIR to this path (in that case the variable below should be None) sfd98_dir = os.path.join(home_dir, 'data/sfd98') import simsurvey import numpy as np import matplotlib.pyplot as plt import sncosmo from astropy.cosmology import Planck15 import simsurvey_tools as sst from scipy.interpolate import RectBivariateSpline as Spline2d import ligo.skymap.plot simsurvey.__version__ # Load the ZTF fields, CCD corners and filters fields = sst.load_ztf_fields() sst.load_ztf_filters() # Load the ZTF CCD corners ccds = sst.load_ztf_ccds() # Load the ZTF quadrants corners ccds = sst.load_ztf_ccds(filename='data/ZTF_corners_rcid.txt', num_segs=64) obs = {'time': [], 'field': [], 'band': [], 'maglim': [], 'skynoise': [], 'comment': [], 'zp': []} mjd_start = 58239.5 for k in range(0, 61, 3): obs['time'].extend([mjd_start + k + l/24. for l in range(3)]) obs['field'].extend([683 for l in range(3)]) obs['band'].extend(['ztfg', 'ztfr', 'ztfi']) obs['maglim'].extend([22 for l in range(3)]) obs['zp'].extend([30 for l in range(3)]) obs['comment'].extend(['' for l in range(3)]) obs['skynoise'] = 10**(-0.4 * (np.array(obs['maglim']) - 30)) / 5 plan = simsurvey.SurveyPlan(time=obs['time'], band=obs['band'], skynoise=obs['skynoise'], obs_field=obs['field'], obs_ccd=None, zp=obs['zp'], comment=obs['comment'], fields=fields, ccds=ccds ) mjd_range = (plan.pointings['time'].min() - 30, plan.pointings['time'].max() + 30) plan.pointings ! git clone https://github.com/mbulla/kilonova_models.git def Bullamodel(dynwind=False, dataDir='kilonova_models/02_Dhawan2019/', mej=0.04, phi=30, temp=5000): l = dataDir+'nph1.0e+06_mej'+'{:.2f}'.format(mej)+'_phi'+'{:.0f}'.format(phi)+'_T'+'{:.1e}'.format(temp)+'.txt' f = open(l) lines = f.readlines() nobs = int(lines[0]) nwave = float(lines[1]) line3 = (lines[2]).split(' ') ntime = int(line3[0]) t_i = float(line3[1]) t_f = float(line3[2]) cos_theta = np.linspace(0, 1, nobs) # 11 viewing angles phase = np.linspace(t_i, t_f, ntime) # epochs file_ = np.genfromtxt(l, skip_header=3) wave = file_[0:int(nwave),0] flux = [] for i in range(int(nobs)): flux.append(file_[i*int(nwave):i*int(nwave)+int(nwave),1:]) flux = np.array(flux).T return phase, wave, cos_theta, flux # AngularTimeSeriesSource classdefined to create an angle dependent time serie source. class AngularTimeSeriesSource(sncosmo.Source): A single-component spectral time series model. The spectral flux density of this model is given by .. math:: F(t, \lambda) = A \\times M(t, \lambda) where _M_ is the flux defined on a grid in phase and wavelength and _A_ (amplitude) is the single free parameter of the model. The amplitude _A_ is a simple unitless scaling factor applied to whatever flux values are used to initialize the ``TimeSeriesSource``. Therefore, the _A_ parameter has no intrinsic meaning. It can only be interpreted in conjunction with the model values. Thus, it is meaningless to compare the _A_ parameter between two different ``TimeSeriesSource`` instances with different model data. Parameters ---------- phase : `~numpy.ndarray` Phases in days. wave : `~numpy.ndarray` Wavelengths in Angstroms. cos_theta: `~numpy.ndarray` Cosine of flux : `~numpy.ndarray` Model spectral flux density in erg / s / cm^2 / Angstrom. Must have shape ``(num_phases, num_wave, num_cos_theta)``. zero_before : bool, optional If True, flux at phases before minimum phase will be zeroed. The default is False, in which case the flux at such phases will be equal to the flux at the minimum phase (``flux[0, :]`` in the input array). name : str, optional Name of the model. Default is `None`. version : str, optional Version of the model. Default is `None`. _param_names = ['amplitude', 'theta'] param_names_latex = ['A', r'\theta'] def __init__(self, phase, wave, cos_theta, flux, zero_before=True, zero_after=True, name=None, version=None): self.name = name self.version = version self._phase = phase self._wave = wave self._cos_theta = cos_theta self._flux_array = flux self._parameters = np.array([1., 0.]) self._current_theta = 0. self._zero_before = zero_before self._zero_after = zero_after self._set_theta() def _set_theta(self): logflux_ = np.zeros(self._flux_array.shape[:2]) for k in range(len(self._phase)): adding = 1e-10 # Here we are adding 1e-10 to avoid problems with null values f_tmp = Spline2d(self._wave, self._cos_theta, np.log(self._flux_array[k]+adding), kx=1, ky=1) logflux_[k] = f_tmp(self._wave, np.cos(self._parameters[1]*np.pi/180)).T self._model_flux = Spline2d(self._phase, self._wave, logflux_, kx=1, ky=1) self._current_theta = self._parameters[1] def _flux(self, phase, wave): if self._current_theta != self._parameters[1]: self._set_theta() f = self._parameters[0] * (np.exp(self._model_flux(phase, wave))) if self._zero_before: mask = np.atleast_1d(phase) < self.minphase() f[mask, :] = 0. if self._zero_after: mask = np.atleast_1d(phase) > self.maxphase() f[mask, :] = 0. return f phase, wave, cos_theta, flux = Bullamodel() source = AngularTimeSeriesSource(phase, wave, cos_theta, flux) dust = sncosmo.CCM89Dust() model = sncosmo.Model(source=source,effects=[dust, dust], effect_names=['host', 'MW'], effect_frames=['rest', 'obs']) # Distribution of viewing angles thetadist = 'uniform in cosine' # 'uniform in cosine', 'uniform in degrees', 'fixed theta' def random_parameters(redshifts, model,r_v=2., ebv_rate=0.11,**kwargs): # Amplitude amp = [] for z in redshifts: amp.append(10**(-0.4*Planck15.distmod(z).value)) if thetadist=='uniform in cosine': theta = np.arccos(np.random.random(len(redshifts))) / np.pi * 180 elif thetadist=='uniform in degrees': theta = np.random.uniform(0, 90,size=len(redshifts)) elif thetadist=='fixed theta': theta = np.array([20]*len(redshifts)) # Viewing angle fixed to 20 degrees return { 'amplitude': np.array(amp), 'theta': theta, 'hostr_v': r_v * np.ones(len(redshifts)), 'hostebv': np.random.exponential(ebv_rate, len(redshifts)) } transientprop = dict(lcmodel=model, lcsimul_func=random_parameters) ntransient = 1000 rate = 1000 * 1e-6 # Mpc-3 yr-1 dec_range=(plan.pointings['Dec'].min()-10,plan.pointings['Dec'].max()+10) ra_range=(plan.pointings['RA'].min()-10,plan.pointings['RA'].max()+10) tr = simsurvey.get_transient_generator([0, 0.05], ntransient=ntransient, ratefunc=lambda z: rate, dec_range=dec_range, ra_range=ra_range, mjd_range=(mjd_range[0], mjd_range[1]), transientprop=transientprop, sfd98_dir=sfd98_dir ) # With sourcenoise==False, the flux error will correspond to the skynoise. Sourcenoise==True add an extra term in the flux errors from the brightness of the source. survey = simsurvey.SimulSurvey(generator=tr, plan=plan, n_det=2, threshold=5., sourcenoise=False) lcs = survey.get_lightcurves( progress_bar=True, notebook=True # If you get an error because of the progress_bar, delete this line. ) len(lcs.lcs) lcs.save('lcs.pkl') _ = sncosmo.plot_lc(lcs[0]) # Redshift distribution plt.hist(lcs.meta_full['z'], lw=1, histtype='step', range=(0,0.05), bins=20, label='all') plt.hist(lcs.meta['z'], lw=2, histtype='step', range=(0,0.05), bins=20, label='detected') plt.xlabel('Redshift', fontsize='x-large') plt.ylabel(r'$N_{KNe}$', fontsize='x-large') plt.xlim((0, 0.05)) plt.legend() plt.hist(lcs.stats['p_det'], lw=2, histtype='step', range=(0,10), bins=20) plt.xlabel('Detection phase (observer-frame)', fontsize='x-large') _ = plt.ylabel(r'$N_{KNe}$', fontsize='x-large') plt.figure() ax = plt.axes() ax.grid() ax.scatter(lcs.meta_notobserved['ra'], lcs.meta_notobserved['dec'], marker='*', label='meta_notobserved', alpha=0.7) ax.scatter(lcs.meta_rejected['ra'], lcs.meta_rejected['dec'], marker='*', label='meta_rejected', alpha=0.7) ax.scatter(lcs.meta['ra'], lcs.meta['dec'], marker='*', label='meta_detected', alpha=0.7) #ax.legend(loc='center left', bbox_to_anchor=(0.9, .5)) ax.legend(loc=0) ax.set_ylabel('DEC (deg)') ax.set_xlabel('RA (deg)') plt.tight_layout() plt.show() plt.figure() ax = plt.axes( [0.05, 0.05, 0.9, 0.9], projection='geo degrees mollweide' ) ax.grid() ax.scatter(lcs.meta_notobserved['ra'], lcs.meta_notobserved['dec'], transform=ax.get_transform('world'), marker='*', label='meta_notobserved', alpha=0.7) ax.scatter(lcs.meta_rejected['ra'], lcs.meta_rejected['dec'], transform=ax.get_transform('world'), marker='*', label='meta_rejected', alpha=0.7) ax.scatter(lcs.meta['ra'], lcs.meta['dec'], transform=ax.get_transform('world'), marker='*', label='meta_detected', alpha=0.7) #ax.legend(loc='center left', bbox_to_anchor=(0.9, .5)) ax.legend(loc=0) ax.set_ylabel('DEC (deg)') ax.set_xlabel('RA (deg)') plt.tight_layout() plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step2: ALS implementation using DML Step3: Running the Algorithm Step5: Predictions Step6: Just for Fun!
<ASSISTANT_TASK:> Python Code: from pyspark.sql import SparkSession from pyspark.sql.types import * from systemml import MLContext, dml spark = SparkSession\ .builder\ .appName("als-example")\ .getOrCreate() schema = StructType([StructField("movieId", IntegerType(), True), StructField("userId", IntegerType(), True), StructField("rating", IntegerType(), True), StructField("date", StringType(), True)]) ratings = spark.read.csv("./netflix/training_set_normalized/mv_0*.txt", schema = schema) ratings = ratings.select('userId', 'movieId', 'rating') ratings.show(10) ratings.describe().show() #----------------------------------------------------------------- # Create kernel in SystemML's DSL using the R-like syntax for ALS # Algorithms available at : https://systemml.apache.org/algorithms # Below algorithm based on ALS-CG.dml #----------------------------------------------------------------- als_dml = \ # Default values of some parameters r = rank max_iter = 50 check = TRUE thr = 0.01 R = table(X[,1], X[,2], X[,3]) # check the input matrix R, if some rows or columns contain only zeros remove them from R R_nonzero_ind = R != 0; row_nonzeros = rowSums(R_nonzero_ind); col_nonzeros = t(colSums (R_nonzero_ind)); orig_nonzero_rows_ind = row_nonzeros != 0; orig_nonzero_cols_ind = col_nonzeros != 0; num_zero_rows = nrow(R) - sum(orig_nonzero_rows_ind); num_zero_cols = ncol(R) - sum(orig_nonzero_cols_ind); if (num_zero_rows > 0) { print("Matrix R contains empty rows! These rows will be removed."); R = removeEmpty(target = R, margin = "rows"); } if (num_zero_cols > 0) { print ("Matrix R contains empty columns! These columns will be removed."); R = removeEmpty(target = R, margin = "cols"); } if (num_zero_rows > 0 | num_zero_cols > 0) { print("Recomputing nonzero rows and columns!"); R_nonzero_ind = R != 0; row_nonzeros = rowSums(R_nonzero_ind); col_nonzeros = t(colSums (R_nonzero_ind)); } ###### MAIN PART ###### m = nrow(R); n = ncol(R); # initializing factor matrices U = rand(rows = m, cols = r, min = -0.5, max = 0.5); M = rand(rows = n, cols = r, min = -0.5, max = 0.5); # initializing transformed matrices Rt = t(R); loss = matrix(0, rows=max_iter+1, cols=1) if (check) { loss[1,] = sum(R_nonzero_ind * (R - (U %*% t(M)))^2) + lambda * (sum((U^2) * row_nonzeros) + sum((M^2) * col_nonzeros)); print("----- Initial train loss: " + toString(loss[1,1]) + " -----"); } lambda_I = diag (matrix (lambda, rows = r, cols = 1)); it = 0; converged = FALSE; while ((it < max_iter) & (!converged)) { it = it + 1; # keep M fixed and update U parfor (i in 1:m) { M_nonzero_ind = t(R[i,] != 0); M_nonzero = removeEmpty(target=M * M_nonzero_ind, margin="rows"); A1 = (t(M_nonzero) %*% M_nonzero) + (as.scalar(row_nonzeros[i,1]) * lambda_I); # coefficient matrix U[i,] = t(solve(A1, t(R[i,] %*% M))); } # keep U fixed and update M parfor (j in 1:n) { U_nonzero_ind = t(Rt[j,] != 0) U_nonzero = removeEmpty(target=U * U_nonzero_ind, margin="rows"); A2 = (t(U_nonzero) %*% U_nonzero) + (as.scalar(col_nonzeros[j,1]) * lambda_I); # coefficient matrix M[j,] = t(solve(A2, t(Rt[j,] %*% U))); } # check for convergence if (check) { loss_init = as.scalar(loss[it,1]) loss_cur = sum(R_nonzero_ind * (R - (U %*% t(M)))^2) + lambda * (sum((U^2) * row_nonzeros) + sum((M^2) * col_nonzeros)); loss_dec = (loss_init - loss_cur) / loss_init; print("Train loss at iteration (M) " + it + ": " + loss_cur + " loss-dec " + loss_dec); if (loss_dec >= 0 & loss_dec < thr | loss_init == 0) { print("----- ALS converged after " + it + " iterations!"); converged = TRUE; } loss[it+1,1] = loss_cur } } # end of while loop loss = loss[1:it+1,1] if (check) { print("----- Final train loss: " + toString(loss[it+1,1]) + " -----"); } if (!converged) { print("Max iteration achieved but not converged!"); } # inject 0s in U if original R had empty rows if (num_zero_rows > 0) { U = removeEmpty(target = diag(orig_nonzero_rows_ind), margin = "cols") %*% U; } # inject 0s in R if original V had empty rows if (num_zero_cols > 0) { M = removeEmpty(target = diag(orig_nonzero_cols_ind), margin = "cols") %*% M; } M = t(M); ml = MLContext(sc) # Define input/output variables for DML script alsScript = dml(als_dml).input("X", ratings) \ .input("lambda", 0.01) \ .input("rank", 100) \ .output("U", "M", "loss") # Execute script res = ml.execute(alsScript) U, M, loss = res.get('U','M', "loss") import matplotlib.pyplot as plt %matplotlib inline plt.plot(loss.toNumPy(), 'o'); predict_dml = \ R = table(R[,1], R[,2], R[,3]) K = 5 Rrows = nrow(R); Rcols = ncol(R); zero_cols_ind = (colSums(M != 0)) == 0; K = min(Rcols - sum(zero_cols_ind), K); n = nrow(X); Urows = nrow(U); Mcols = ncol(M); X_user_max = max(X[,1]); if (X_user_max > Rrows) { stop("Predictions cannot be provided. Maximum user-id exceeds the number of rows of R."); } if (Urows != Rrows | Mcols != Rcols) { stop("Number of rows of U (columns of M) does not match the number of rows (column) of R."); } # creats projection matrix to select users s = seq(1, n); ones = matrix(1, rows = n, cols = 1); P = table(s, X[,1], ones, n, Urows); # selects users from factor U U_prime = P %*% U; # calculate rating matrix for selected users R_prime = U_prime %*% M; # selects users from original R R_users = P %*% R; # create indictor matrix to remove existing ratings for given users I = R_users == 0; # removes already recommended items and creating user2item matrix R_prime = R_prime * I; # stores sorted movies for selected users R_top_indices = matrix(0, rows = nrow (R_prime), cols = K); R_top_values = matrix(0, rows = nrow (R_prime), cols = K); # a large number to mask the max ratings range = max(R_prime) - min(R_prime) + 1; # uses rowIndexMax/rowMaxs to update kth ratings for (i in 1:K){ rowIndexMax = rowIndexMax(R_prime); rowMaxs = rowMaxs(R_prime); R_top_indices[,i] = rowIndexMax; R_top_values[,i] = rowMaxs; R_prime = R_prime - range * table(seq (1, nrow(R_prime), 1), rowIndexMax, nrow(R_prime), ncol(R_prime)); } R_top_indices = R_top_indices * (R_top_values > 0); # cbind users as a first column R_top_indices = cbind(X[,1], R_top_indices); R_top_values = cbind(X[,1], R_top_values); # user for which we want to recommend movies ids = [116,126,130,131,133,142,149,158,164,168,169,177,178,183,188,189,192,195,199,201,215,231,242,247,248, 250,261,265,266,267,268,283,291,296,298,299,301,302,304,305,307,308,310,312,314,330,331,333,352,358,363, 368,369,379,383,384,385,392,413,416,424,437,439,440,442,453,462,466,470,471,477,478,479,481,485,490,491] users = spark.createDataFrame([[i] for i in ids]) predScript = dml(predict_dml).input("R", ratings) \ .input("X", users) \ .input("U", U) \ .input("M", M) \ .output("R_top_indices") pred = ml.execute(predScript).get("R_top_indices") pred = pred.toNumPy() import pandas as pd titles = pd.read_csv("./netflix/movie_titles.csv", header=None, sep=';', names=['movieID', 'year', 'title']) import re import wikipedia as wiki from bs4 import BeautifulSoup as bs import requests as rq from IPython.core.display import Image, display def get_poster(title): if title.endswith('Bonus Material'): title = title.strip('Bonus Material') title = re.sub(r'[^\w\s]','',title) matches = wiki.search(title) if matches is None: return film = [s for s in matches if 'film)' in s] film = film[0] if len(film) > 0 else matches[0] try: url = wiki.page(film).url except: return html = rq.get(url) if html.status_code == 200: soup = bs(html.content, 'html.parser') infobox = soup.find('table', class_="infobox") if (infobox): img = infobox.find('img') if img: display(Image('http:' + img['src'])) def show_recommendations(userId, preds): for row in preds: if int(row[0]) == userId: print("\nrecommendations for userId", int(row[0]) ) for title in titles.title[row[1:]].values: print(title) get_poster(title) break show_recommendations(192, preds=pred) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Paths Step2: Config parameters Step3: Data Loading Step4: experimenting with Fastai Step5: Misc / Asides / Notes
<ASSISTANT_TASK:> Python Code: import pathlib import os import torchtext # from torchtext.data import Field from torchtext import data # import spacy import pandas as pd import numpy as np # from torchtext.data import TabularDataset data_path = pathlib.Path('../../data') comp_path = pathlib.Path(data_path/'competitions/jigsaw-toxic-comment-classification-challenge') EMBEDDING_FILE = 'glove/glove.6B.50d.txt' TRAIN_DATA_FILE= 'train.csv' TEST_DATA_FILE = 'test.csv' embed_sz = 50 # embedding vector columns (factors) max_feat = 20000 # embedding vector rows (words) maxlen = 100 # words in comment to use list_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] # train = pd.read_csv(comp_path/TRAIN_DATA_FILE) # test = pd.read_csv(comp/TEST_DATA_FILE) # SEE: Aside 1, Aside 2 # TEXT = Field(sequential=True, tokenize='spacy', lower=True) TEXT = data.Field(sequential=True, tokenize= lambda x: x.split(), lower=True, ) LABEL = data.Field(sequential=False, use_vocab=False) # trainval_datafields = [("id",None),("comment_text",TEXT)] # trainval_datafields.extend((clss, LABEL) for clss in list_classes) # test_datafields = [("id",None), ("comment_text",TEXT)] # train_dataset = data.TabularDataset( # path=comp_path/TRAIN_DATA_FILE, format='csv', # skip_header=True, fields=trainval_datafields, # sort_within_batch=True) # test_dataset = data.TabularDataset( # path=comp_path/TEST_DATA_FILE, format='csv', # skip_header=True, fields=test_datafields) # # TEXT.build_vocab(train_dataset) from fastai.nlp import * train_df = pd.read_csv(comp_path/TRAIN_DATA_FILE) # SEE: Aside 3 model = LanguageModelData.from_dataframes( path=comp_path, field=TEXT, col="comment_text", train_df=train_df, val_df=train_df, test_df=train_df, bs=64, min_freq=3) em_sz = 200 nh = 500 nl = 3 opt_fn = partial(optim.Adam, betas=(0.7, 0.99)) learner = model.get_model(opt_fn, em_sz, nh, nl, dropouti=0.05, dropout=0.05, wdrop=0.1, dropoute=0.02, dropouth=0.05) learner.clip = 0.3 # gradient clipping learner.model.parameters list_classes = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"] train = pd.read_csv(comp_path/TRAIN_DATA_FILE) # test = pd.read_csv(comp/TEST_DATA_FILE) train[list_classes][55:65] <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load the MNIST database Step2: Each digit is represented by a one hot vector where the index of the 1 represents the number Step3: Load the saved weight matrices that were created by training the model Step4: Functions to perform the inhibition of each ensemble Step5: The network where the mental imagery and rotation occurs Step6: The following is not part of the brain model, it is used to view the output for the ensemble Step7: Pickle the probe's output if it takes a long time to run Step8: Testing Step9: Just for fun
<ASSISTANT_TASK:> Python Code: import nengo import numpy as np import cPickle from nengo_extras.data import load_mnist from nengo_extras.vision import Gabor, Mask from matplotlib import pylab import matplotlib.pyplot as plt import matplotlib.animation as animation from scipy import linalg # --- load the data img_rows, img_cols = 28, 28 (X_train, y_train), (X_test, y_test) = load_mnist() X_train = 2 * X_train - 1 # normalize to -1 to 1 X_test = 2 * X_test - 1 # normalize to -1 to 1 temp = np.diag([1]*10) ZERO = temp[0] ONE = temp[1] TWO = temp[2] THREE= temp[3] FOUR = temp[4] FIVE = temp[5] SIX = temp[6] SEVEN =temp[7] EIGHT= temp[8] NINE = temp[9] labels =[ZERO,ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE] dim =28 label_weights = cPickle.load(open("label_weights5000.p", "rb")) activity_to_img_weights = cPickle.load(open("activity_to_img_weights5000.p", "rb")) rotated_clockwise_after_encoder_weights = cPickle.load(open("rotated_after_encoder_weights_clockwise5000.p", "r")) rotated_counter_after_encoder_weights = cPickle.load(open("rotated_after_encoder_weights5000.p", "r")) #scale_up_after_encoder_weights = cPickle.load(open("scale_up_after_encoder_weights1000.p","r")) #scale_down_after_encoder_weights = cPickle.load(open("scale_down_after_encoder_weights1000.p","r")) #translate_up_after_encoder_weights = cPickle.load(open("translate_up_after_encoder_weights1000.p","r")) #translate_down_after_encoder_weights = cPickle.load(open("translate_down_after_encoder_weights1000.p","r")) #translate_left_after_encoder_weights = cPickle.load(open("translate_left_after_encoder_weights1000.p","r")) #translate_right_after_encoder_weights = cPickle.load(open("translate_right_after_encoder_weights1000.p","r")) #identity_after_encoder_weights = cPickle.load(open("identity_after_encoder_weights1000.p","r")) #A value of zero gives no inhibition def inhibit_rotate_clockwise(t): if t < 1: return dim**2 else: return 0 def inhibit_rotate_counter(t): if t < 1: return 0 else: return dim**2 def inhibit_identity(t): if t < 1: return dim**2 else: return dim**2 def inhibit_scale_up(t): return dim**2 def inhibit_scale_down(t): return dim**2 def inhibit_translate_up(t): return dim**2 def inhibit_translate_down(t): return dim**2 def inhibit_translate_left(t): return dim**2 def inhibit_translate_right(t): return dim**2 def add_manipulation(main_ens,weights,inhibition_func): #create ensemble for manipulation ens_manipulation = nengo.Ensemble(n_hid,dim**2,seed=3,encoders=encoders, **ens_params) #create node for inhibition inhib_manipulation = nengo.Node(inhibition_func) #Connect the main ensemble to each manipulation ensemble and back with appropriate transformation nengo.Connection(main_ens.neurons, ens_manipulation.neurons, transform = weights.T, synapse=0.1) nengo.Connection(ens_manipulation.neurons, main_ens.neurons, transform = weights.T,synapse = 0.1) #connect inhibition nengo.Connection(inhib_manipulation, ens_manipulation.neurons, transform=[[-1]] * n_hid) #return ens_manipulation,inhib_manipulation rng = np.random.RandomState(9) n_hid = 1000 model = nengo.Network(seed=3) with model: #Stimulus only shows for brief period of time stim = nengo.Node(lambda t: ONE if t < 0.1 else 0) #nengo.processes.PresentInput(labels,1))# ens_params = dict( eval_points=X_train, neuron_type=nengo.LIF(), #Why not use LIF? intercepts=nengo.dists.Choice([-0.5]), max_rates=nengo.dists.Choice([100]), ) # linear filter used for edge detection as encoders, more plausible for human visual system encoders = Gabor().generate(n_hid, (11, 11), rng=rng) encoders = Mask((28, 28)).populate(encoders, rng=rng, flatten=True) #Ensemble that represents the image with different transformations applied to it ens = nengo.Ensemble(n_hid, dim**2, seed=3, encoders=encoders, **ens_params) #Connect stimulus to ensemble, transform using learned weight matrices nengo.Connection(stim, ens, transform = np.dot(label_weights,activity_to_img_weights).T) #Recurrent connection on the neurons of the ensemble to perform the rotation #nengo.Connection(ens.neurons, ens.neurons, transform = rotated_counter_after_encoder_weights.T, synapse=0.1) #add_manipulation(ens,rotated_clockwise_after_encoder_weights, inhibit_rotate_clockwise) add_manipulation(ens,rotated_counter_after_encoder_weights, inhibit_rotate_counter) add_manipulation(ens,scale_up_after_encoder_weights, inhibit_scale_up) #add_manipulation(ens,scale_down_after_encoder_weights, inhibit_scale_down) #add_manipulation(ens,translate_up_after_encoder_weights, inhibit_translate_up) #add_manipulation(ens,translate_down_after_encoder_weights, inhibit_translate_down) #add_manipulation(ens,translate_left_after_encoder_weights, inhibit_translate_left) #add_manipulation(ens,translate_right_after_encoder_weights, inhibit_translate_right) #Collect output, use synapse for smoothing probe = nengo.Probe(ens.neurons,synapse=0.1) sim = nengo.Simulator(model) sim.run(5) '''Animation for Probe output''' fig = plt.figure() output_acts = [] for act in sim.data[probe]: output_acts.append(np.dot(act,activity_to_img_weights)) def updatefig(i): im = pylab.imshow(np.reshape(output_acts[i],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r'),animated=True) return im, ani = animation.FuncAnimation(fig, updatefig, interval=100, blit=True) plt.show() print(len(sim.data[probe])) plt.subplot(161) plt.title("100") pylab.imshow(np.reshape(output_acts[100],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(162) plt.title("500") pylab.imshow(np.reshape(output_acts[500],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(163) plt.title("1000") pylab.imshow(np.reshape(output_acts[1000],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(164) plt.title("1500") pylab.imshow(np.reshape(output_acts[1500],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(165) plt.title("2000") pylab.imshow(np.reshape(output_acts[2000],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(166) plt.title("2500") pylab.imshow(np.reshape(output_acts[2500],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.show() #The filename includes the number of neurons and which digit is being rotated filename = "mental_rotation_output_ONE_" + str(n_hid) + ".p" cPickle.dump(sim.data[probe], open( filename , "wb" ) ) testing = np.dot(ONE,np.dot(label_weights,activity_to_img_weights)) plt.subplot(121) pylab.imshow(np.reshape(testing,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) #Get image testing = np.dot(ONE,np.dot(label_weights,activity_to_img_weights)) #Get activity of image _, testing_act = nengo.utils.ensemble.tuning_curves(ens, sim, inputs=testing) #Get rotated encoder outputs testing_rotate = np.dot(testing_act,rotated_after_encoder_weights) #Get activities testing_rotate = ens.neuron_type.rates(testing_rotate, sim.data[ens].gain, sim.data[ens].bias) for i in range(5): testing_rotate = np.dot(testing_rotate,rotated_after_encoder_weights) testing_rotate = ens.neuron_type.rates(testing_rotate, sim.data[ens].gain, sim.data[ens].bias) #testing_rotate = np.dot(testing_rotate,rotation_weights) testing_rotate = np.dot(testing_rotate,activity_to_img_weights) plt.subplot(122) pylab.imshow(np.reshape(testing_rotate,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.show() plt.subplot(121) pylab.imshow(np.reshape(X_train[0],(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) #Get activity of image _, testing_act = nengo.utils.ensemble.tuning_curves(ens, sim, inputs=X_train[0]) testing_rotate = np.dot(testing_act,activity_to_img_weights) plt.subplot(122) pylab.imshow(np.reshape(testing_rotate,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.show() letterO = np.dot(ZERO,np.dot(label_weights,activity_to_img_weights)) plt.subplot(161) pylab.imshow(np.reshape(letterO,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) letterL = np.dot(SEVEN,label_weights) for _ in range(30): letterL = np.dot(letterL,rotation_weights) letterL = np.dot(letterL,activity_to_img_weights) plt.subplot(162) pylab.imshow(np.reshape(letterL,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) letterI = np.dot(ONE,np.dot(label_weights,activity_to_img_weights)) plt.subplot(163) pylab.imshow(np.reshape(letterI,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.subplot(165) pylab.imshow(np.reshape(letterI,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) letterV = np.dot(SEVEN,label_weights) for _ in range(40): letterV = np.dot(letterV,rotation_weights) letterV = np.dot(letterV,activity_to_img_weights) plt.subplot(164) pylab.imshow(np.reshape(letterV,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) letterA = np.dot(SEVEN,label_weights) for _ in range(10): letterA = np.dot(letterA,rotation_weights) letterA = np.dot(letterA,activity_to_img_weights) plt.subplot(166) pylab.imshow(np.reshape(letterA,(dim, dim), 'F').T, cmap=plt.get_cmap('Greys_r')) plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Processing the text using TRIPS Step2: We can pass the block of text defined above to the TRIPS processor Step3: Here tp is a TripsProcessor object which contains the extacted INDRA Statements as a list. We can inspect the statements extracted by TRIPS to make sure that all of the information was extracted. Step4: Assembling a PySB model Step5: Next, we instantiate a PySB assembler object. Step6: The assembler takes a list of INDRA Statements as input in order to build a model. Step7: We finally call the assembler's make_model method to produce the PySB model. Step8: Simulating the model Step9: We add some initial active ATM to start off the reaction network. Step10: Below are the parameters we define for the simulation (these override the nominal parameters automatically defined by INDRA's PySB Assembler). Step11: Now we set up an observable which monitors the amount of active p53 over time in order to then be able to plot this quantity. Step12: We want to simulate the model over a relevant length of time Step13: We now instantiate a numerical ODE solver and run it with the model for the specified time span. Step14: Finally, we plot the time course of active p53.
<ASSISTANT_TASK:> Python Code: model_text = \ ''' Active ATM phosphorylates ATM, and phosphorylated ATM is active. Active ATM activates p53. p53 is transcribed and active p53 transcribes MDM2. MDM2 is degraded. Active p53 activates Wip1. Active Wip1 inactivates p53. Active Wip1 dephosphorylates ATM. MDM2 ubiquitinates p53 and ubiquitinated p53 is degraded. HIPK2 inactivates Wip1. ''' from indra.sources import trips tp = trips.process_text(model_text) tp.statements from indra.assemblers.pysb import PysbAssembler pa = PysbAssembler() pa.add_statements(tp.statements) model = pa.make_model() model.name = 'p53_DSB_model' from pysb import Parameter, Observable model.add_component(Parameter('ATMa_0', 1)) atm_atr_m = model.monomers['ATM'] model.initial(atm_atr_m(phospho='p'),model.parameters['ATMa_0']) parameters = { "kf_aa_phosphorylation_1": 5e-07, "kf_pa_dephosphorylation_1": 1e-05, "kf_mt_ubiquitination_1": 1e-06, "kf_at_act_1": 1e-07, "kf_tp_act_1": 1e-07, "kf_pt_act_1": 5e-07, "kf_hp_act_1": 1e-07, "kf_m_deg_1": 0.08, "kf_t_deg_1": 2e-05, "kf_t_synth_1": 2.0, "kf_tm_synth_1": 0.02, "HIPK2_0": 10000.0, "MDM2_0": 0, "ATM_0": 10000.0, "TP53_0": 10000.0, "PPM1D_0": 10000.0, "ATMa_0": 1.0, } for name, value in parameters.items(): model.parameters[name].value = value # Add active p53 observable p53 = model.monomers['TP53'] obs = Observable('p53_active', p53(activity='active')) model.add_component(obs) import numpy as np sim_hours = 24 ts = np.linspace(0, sim_hours*3600, sim_hours*60) from pysb.integrate import Solver solver = Solver(model, ts) solver.run() import matplotlib.pyplot as plt %matplotlib inline plt.figure() plt.plot(ts, solver.yobs['p53_active'], 'r') plt.xticks([]) plt.xlabel('Time (a.u.)') plt.ylabel('Active p53') plt.yticks([]) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: In the Data Processing Pipelines section we discovered how to declare a DynamicMap and control multiple processing steps with the use of custom streams as described in the Responding to Events guide. Here we will use the same example exploring a dataset of stock timeseries and build a small dashboard using the Panel library, which allows us to declare easily declare custom widgets and link them to our streams. We will begin by once again declaring our function that loads the stock data Step2: Building dashboards Step3: You will have noticed the param.depends decorator on the load_symbol method above, this declares that the method depends on these two parameters. When we pass the method to a DynamicMap it will now automatically listen to changes to the 'symbol', and 'variable' parameters. To generate a set of widgets to control these parameters we can simply supply the explorer.param accessor to a panel layout, and combining the two we can quickly build a little GUI Step4: The rolling_window parameter is not yet connected to anything however, so just like in the Data Processing Pipelines section we will see how we can get the widget to control the parameters of an operation. Both the rolling and rolling_outlier_std operations accept a rolling_window parameter, so we create a Params stream to listen to that parameter and then pass it to the operations. Finally we compose everything into a panel Row Step5: Replacing the output Step6: In the previous example we explicitly called the view method, but to allow panel to update the plot when the datashade parameter is toggled we instead pass it the actual view method. Whenever the datashade parameter is toggled panel will call the method and update the plot with whatever is returned
<ASSISTANT_TASK:> Python Code: import pandas as pd import holoviews as hv from bokeh.sampledata import stocks from holoviews.operation.timeseries import rolling, rolling_outlier_std hv.extension('bokeh') def load_symbol(symbol, variable='adj_close', **kwargs): df = pd.DataFrame(getattr(stocks, symbol)) df['date'] = df.date.astype('datetime64[ns]') return hv.Curve(df, ('date', 'Date'), variable) stock_symbols = ['AAPL', 'IBM', 'FB', 'GOOG', 'MSFT'] dmap = hv.DynamicMap(load_symbol, kdims='Symbol').redim.values(Symbol=stock_symbols) dmap.opts(framewise=True) import param import panel as pn from holoviews.streams import Params class StockExplorer(param.Parameterized): rolling_window = param.Integer(default=10, bounds=(1, 365)) symbol = param.ObjectSelector(default='AAPL', objects=stock_symbols) variable = param.ObjectSelector(default='adj_close', objects=[ 'date', 'open', 'high', 'low', 'close', 'volume', 'adj_close']) @param.depends('symbol', 'variable') def load_symbol(self): df = pd.DataFrame(getattr(stocks, self.symbol)) df['date'] = df.date.astype('datetime64[ns]') return hv.Curve(df, ('date', 'Date'), self.variable).opts(framewise=True) explorer = StockExplorer() stock_dmap = hv.DynamicMap(explorer.load_symbol) pn.Row(explorer.param, stock_dmap) # Apply rolling mean window = Params(explorer, ['rolling_window']) smoothed = rolling(stock_dmap, streams=[window]) # Find outliers outliers = rolling_outlier_std(stock_dmap, streams=[window]).opts( hv.opts.Scatter(color='red', marker='triangle') ) pn.Row(explorer.param, (smoothed * outliers).opts(width=600)) from holoviews.operation.datashader import datashade, dynspread class AdvancedStockExplorer(StockExplorer): datashade = param.Boolean(default=False) @param.depends('datashade') def view(self): stocks = hv.DynamicMap(self.load_symbol) # Apply rolling mean window = Params(self, ['rolling_window']) smoothed = rolling(stocks, streams=[window]) if self.datashade: smoothed = dynspread(datashade(smoothed)).opts(framewise=True) # Find outliers outliers = rolling_outlier_std(stocks, streams=[window]).opts( width=600, color='red', marker='triangle', framewise=True) return (smoothed * outliers) explorer = AdvancedStockExplorer() pn.Row(explorer.param, explorer.view) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Enter Your Project and GCS Bucket Step2: Set Your Application Name, Task Name, and Directories. Step3: Set a GCS Prefix Step7: Stack Overflow Data Step8: Download Data Step9: Prepare CSV Files for Creating Managed Dataset Step10: Create Custom Training Python Package Step11: Write the Training Script Step12: Build Package Step13: Upload the Package to GCS Step14: Create TensorFlow Serving Container Step15: Create a tag for registering the image and register the image with Cloud Container Registry (gcr.io). Step16: Run Custom Python Package Training with Managed Text Dataset Step17: Create a Dataset on Vertex AI Step18: Option 1 Step19: Option 2 Step20: You will need to specify the python package that was built and uploaded to GCS, the module name of the python package, the pre-built training container image uri for training, and in this example, we are using TensorFlow serving container for prediction. Step21: Run the Training Job Step22: Deploy a Model and Create an Endpoint on Vertex AI Step23: Predict on the Endpoint Step25: Batch Prediction Job on the Model
<ASSISTANT_TASK:> Python Code: !pip3 uninstall -y google-cloud-aiplatform !pip3 install google-cloud-aiplatform import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) MY_PROJECT = "YOUR PROJECT ID" MY_STAGING_BUCKET = "gs://YOUR BUCKET" # bucket should be in same region as ucaip APP_NAME = "keras-text-class-stack-overflow-tag" TASK_TYPE = "mbsdk_custom-py-pkg-training" TASK_NAME = f"{TASK_TYPE}_{APP_NAME}" TASK_DIR = f"./{TASK_NAME}" DATA_DIR = f"{TASK_DIR}/data" print(f"Task Name: {TASK_NAME}") print(f"Task Directory: {TASK_DIR}") print(f"Data Directory: {DATA_DIR}") BUCKET_NAME = MY_STAGING_BUCKET.split("gs://")[1] GCS_PREFIX = f"{TASK_TYPE}/{APP_NAME}" print(f"Bucket Name: {BUCKET_NAME}") print(f"GCS Prefix: {GCS_PREFIX}") import csv import os from google.cloud import storage from tensorflow.keras import utils def upload_blob(bucket_name, source_file_name, destination_blob_name): Uploads a file to the bucket. storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) blob.upload_from_filename(source_file_name) destination_file_name = os.path.join("gs://", bucket_name, destination_blob_name) return destination_file_name def download_data(data_dir): Download data. if not os.path.exists(data_dir): os.makedirs(data_dir) url = "https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz" dataset = utils.get_file( "stack_overflow_16k.tar.gz", url, untar=True, cache_dir=data_dir, cache_subdir="", ) data_dir = os.path.join(os.path.dirname(dataset)) return data_dir def upload_train_data_to_gcs(train_data_dir, bucket_name, destination_blob_prefix): Create CSV file using train data content. train_data_dir = os.path.join(data_dir, "train") train_data_fn = os.path.join(data_dir, "train.csv") fp = open(train_data_fn, "w", encoding="utf8") writer = csv.writer( fp, delimiter=",", quotechar='"', quoting=csv.QUOTE_ALL, lineterminator="\n" ) for root, _, files in os.walk(train_data_dir): for file in files: if file.endswith(".txt"): class_name = root.split("/")[-1] file_fn = os.path.join(root, file) with open(file_fn, "r") as f: content = f.readlines() lines = [x.strip().strip('"') for x in content] writer.writerow((lines[0], class_name)) fp.close() train_gcs_url = upload_blob( bucket_name, train_data_fn, os.path.join(destination_blob_prefix, "train.csv") ) return train_gcs_url data_dir = download_data(DATA_DIR) print(f"Data is downloaded to: {data_dir}") !ls $data_dir !ls $data_dir/train gcs_source_train_url = upload_train_data_to_gcs( train_data_dir=os.path.join(data_dir, "train"), bucket_name=BUCKET_NAME, destination_blob_prefix=f"{GCS_PREFIX}/data", ) print(f"Train data content is loaded to {gcs_source_train_url}") !gsutil ls gs://$BUCKET_NAME/$GCS_PREFIX/data PYTHON_PACKAGE_APPLICATION_DIR = f"{TASK_NAME}/trainer" !mkdir -p $PYTHON_PACKAGE_APPLICATION_DIR !touch $PYTHON_PACKAGE_APPLICATION_DIR/__init__.py %%writefile {PYTHON_PACKAGE_APPLICATION_DIR}/task.py import os import argparse import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras import losses from tensorflow.keras.layers.experimental.preprocessing import TextVectorization import json import tqdm VOCAB_SIZE = 10000 MAX_SEQUENCE_LENGTH = 250 def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def build_model(num_classes, loss, optimizer, metrics, vectorize_layer): # vocab_size is VOCAB_SIZE + 1 since 0 is used additionally for padding. model = tf.keras.Sequential([ vectorize_layer, layers.Embedding(VOCAB_SIZE + 1, 64, mask_zero=True), layers.Conv1D(64, 5, padding="valid", activation="relu", strides=2), layers.GlobalMaxPooling1D(), layers.Dense(num_classes), layers.Activation('softmax') ]) model.compile( loss=loss, optimizer=optimizer, metrics=metrics) return model def get_string_labels(predicted_scores_batch, class_names): predicted_labels = tf.argmax(predicted_scores_batch, axis=1) predicted_labels = tf.gather(class_names, predicted_labels) return predicted_labels def predict(export_model, class_names, inputs): predicted_scores = export_model.predict(inputs) predicted_labels = get_string_labels(predicted_scores, class_names) return predicted_labels def parse_args(): parser = argparse.ArgumentParser( description='Keras Text Classification on Stack Overflow Questions') parser.add_argument( '--epochs', default=25, type=int, help='number of training epochs') parser.add_argument( '--batch-size', default=16, type=int, help='mini-batch size') parser.add_argument( '--model-dir', default=os.getenv('AIP_MODEL_DIR'), type=str, help='model directory') parser.add_argument( '--data-dir', default='./data', type=str, help='data directory') parser.add_argument( '--test-run', default=False, type=str2bool, help='test run the training application, i.e. 1 epoch for training using sample dataset') parser.add_argument( '--model-version', default=1, type=int, help='model version') args = parser.parse_args() return args def load_aip_dataset(aip_data_uri_pattern, batch_size, class_names, test_run, shuffle=True, seed=42): data_file_urls = list() labels = list() class_indices = dict(zip(class_names, range(len(class_names)))) num_classes = len(class_names) for aip_data_uri in tqdm.tqdm(tf.io.gfile.glob(pattern=aip_data_uri_pattern)): with tf.io.gfile.GFile(name=aip_data_uri, mode='r') as gfile: for line in gfile.readlines(): line = json.loads(line) data_file_urls.append(line['textContent']) classification_annotation = line['classificationAnnotations'][0] label = classification_annotation['displayName'] labels.append(class_indices[label]) if test_run: break data = list() for data_file_url in tqdm.tqdm(data_file_urls): with tf.io.gfile.GFile(name=data_file_url, mode='r') as gf: txt = gf.read() data.append(txt) print(f' data files count: {len(data_file_urls)}') print(f' data count: {len(data)}') print(f' labels count: {len(labels)}') dataset = tf.data.Dataset.from_tensor_slices(data) label_ds = tf.data.Dataset.from_tensor_slices(labels) label_ds = label_ds.map(lambda x: tf.one_hot(x, num_classes)) dataset = tf.data.Dataset.zip((dataset, label_ds)) if shuffle: # Shuffle locally at each iteration dataset = dataset.shuffle(buffer_size=batch_size * 8, seed=seed) dataset = dataset.batch(batch_size) # Users may need to reference `class_names`. dataset.class_names = class_names return dataset def main(): args = parse_args() class_names = ['csharp', 'java', 'javascript', 'python'] class_indices = dict(zip(class_names, range(len(class_names)))) num_classes = len(class_names) print(f' class names: {class_names}') print(f' class indices: {class_indices}') print(f' num classes: {num_classes}') epochs = 1 if args.test_run else args.epochs aip_model_dir = os.environ.get('AIP_MODEL_DIR') aip_data_format = os.environ.get('AIP_DATA_FORMAT') aip_training_data_uri = os.environ.get('AIP_TRAINING_DATA_URI') aip_validation_data_uri = os.environ.get('AIP_VALIDATION_DATA_URI') aip_test_data_uri = os.environ.get('AIP_TEST_DATA_URI') print(f"aip_model_dir: {aip_model_dir}") print(f"aip_data_format: {aip_data_format}") print(f"aip_training_data_uri: {aip_training_data_uri}") print(f"aip_validation_data_uri: {aip_validation_data_uri}") print(f"aip_test_data_uri: {aip_test_data_uri}") print('Loading AIP dataset') train_ds = load_aip_dataset( aip_training_data_uri, args.batch_size, class_names, args.test_run) print('AIP training dataset is loaded') val_ds = load_aip_dataset( aip_validation_data_uri, 1, class_names, args.test_run) print('AIP validation dataset is loaded') test_ds = load_aip_dataset( aip_test_data_uri, 1, class_names, args.test_run) print('AIP test dataset is loaded') vectorize_layer = TextVectorization( max_tokens=VOCAB_SIZE, output_mode='int', output_sequence_length=MAX_SEQUENCE_LENGTH) train_text = train_ds.map(lambda text, labels: text) vectorize_layer.adapt(train_text) print('The vectorize_layer is adapted') print('Build model') optimizer = 'adam' metrics = ['accuracy'] model = build_model( num_classes, losses.CategoricalCrossentropy(from_logits=True), optimizer, metrics, vectorize_layer) history = model.fit(train_ds, validation_data=val_ds, epochs=epochs) history = history.history print('Training accuracy: {acc}, loss: {loss}'.format( acc=history['accuracy'][-1], loss=history['loss'][-1])) print('Validation accuracy: {acc}, loss: {loss}'.format( acc=history['val_accuracy'][-1], loss=history['val_loss'][-1])) loss, accuracy = model.evaluate(test_ds) print('Test accuracy: {acc}, loss: {loss}'.format( acc=accuracy, loss=loss)) inputs = [ "how do I extract keys from a dict into a list?", # python "debug public static void main(string[] args) {...}", # java ] predicted_labels = predict(model, class_names, inputs) for input, label in zip(inputs, predicted_labels): print(f'Question: {input}') print(f'Predicted label: {label.numpy()}') model_export_path = os.path.join(args.model_dir, str(args.model_version)) model.save(model_export_path) print(f'Model version {args.model_version} is exported to {args.model_dir}') loaded = tf.saved_model.load(model_export_path) input_name = list(loaded.signatures['serving_default'].structured_input_signature[1].keys())[0] print(f'Serving function input: {input_name}') return if __name__ == '__main__': main() %%writefile {TASK_DIR}/setup.py from setuptools import find_packages from setuptools import setup setup( name='trainer', version='0.1', packages=find_packages(), install_requires=(), include_package_data=True, description='My training application.' ) !ls $TASK_DIR !cd $TASK_DIR && python3 setup.py sdist --formats=gztar !ls -ltr $TASK_DIR/dist/trainer-0.1.tar.gz destination_blob_name = f"custom-training-python-package/{APP_NAME}/trainer-0.1.tar.gz" source_file_name = f"{TASK_DIR}/dist/trainer-0.1.tar.gz" python_package_gcs_uri = upload_blob( BUCKET_NAME, source_file_name, destination_blob_name ) python_module_name = "trainer.task" print(f"Custom Training Python Package is uploaded to: {python_package_gcs_uri}") !docker pull tensorflow/serving:latest TF_SERVING_CONTAINER_IMAGE_URI = f"gcr.io/{MY_PROJECT}/tf-serving" !docker tag tensorflow/serving $TF_SERVING_CONTAINER_IMAGE_URI !docker push $TF_SERVING_CONTAINER_IMAGE_URI from google.cloud import aiplatform aiplatform.init(project=MY_PROJECT, staging_bucket=MY_STAGING_BUCKET) dataset_display_name = f"temp-{APP_NAME}-content" gcs_source = gcs_source_train_url dataset = aiplatform.TextDataset.create( display_name=dataset_display_name, gcs_source=gcs_source, import_schema_uri=aiplatform.schema.dataset.ioformat.text.single_label_classification, sync=False, ) MODEL_NAME = APP_NAME PRE_BUILT_TRAINING_CONTAINER_IMAGE_URI = ( "gcr.io/cloud-aiplatform/training/tf-cpu.2-3:latest" ) job = aiplatform.CustomPythonPackageTrainingJob( display_name=f"temp_{TASK_NAME}_tf-serving", python_package_gcs_uri=python_package_gcs_uri, python_module_name=python_module_name, container_uri=PRE_BUILT_TRAINING_CONTAINER_IMAGE_URI, model_serving_container_image_uri=TF_SERVING_CONTAINER_IMAGE_URI, model_serving_container_command=["/usr/bin/tensorflow_model_server"], model_serving_container_args=[ f"--model_name={MODEL_NAME}", "--model_base_path=$(AIP_STORAGE_URI)", "--rest_api_port=8080", "--port=8500", "--file_system_poll_wait_seconds=31540000", ], model_serving_container_predict_route=f"/v1/models/{MODEL_NAME}:predict", model_serving_container_health_route=f"/v1/models/{MODEL_NAME}", ) model = job.run( dataset=dataset, annotation_schema_uri=aiplatform.schema.dataset.annotation.text.classification, args=["--epochs", "50"], replica_count=1, model_display_name=f"temp_{TASK_NAME}_tf-serving", sync=False, ) model.wait() endpoint = model.deploy(machine_type="n1-standard-4", sync=False) endpoint.wait() class_names = ["csharp", "java", "javascript", "python"] class_ids = range(len(class_names)) class_indices = dict(zip(class_names, class_ids)) class_maps = dict(zip(class_ids, class_names)) print(f"Class Indices: {class_indices}") print(f"Class Maps: {class_maps}") text_inputs = [ "how do I extract keys from a dict into a list?", # python "debug public static void main(string[] args) {...}", # java ] import numpy as np predictions = endpoint.predict(instances=[[text] for text in text_inputs]) for text, predicted_scores in zip(text_inputs, predictions.predictions): class_id = np.argmax(predicted_scores) class_name = class_maps[class_id] print(f"Question: {text}") print(f"Predicted Tag: {class_name}\n") import json import tensorflow as tf def upload_test_data_to_gcs(test_data_dir, test_gcs_url): Create JSON file using test data content. input_name = "text_vectorization_input" with tf.io.gfile.GFile(test_gcs_url, "w") as gf: for root, _, files in os.walk(test_data_dir): for file in files: if file.endswith(".txt"): file_fn = os.path.join(root, file) with open(file_fn, "r") as f: content = f.readlines() lines = [x.strip().strip('"') for x in content] data = {input_name: [lines[0]]} gf.write(json.dumps(data)) gf.write("\n") return gcs_source_test_url = f"gs://{BUCKET_NAME}/{GCS_PREFIX}/data/test.json" upload_test_data_to_gcs( test_data_dir=os.path.join(data_dir, "test"), test_gcs_url=gcs_source_test_url ) print(f"Test data content is loaded to {gcs_source_test_url}") !gsutil ls $gcs_source_test_url batch_predict_job = model.batch_predict( job_display_name=f"temp_{TASK_NAME}_tf-serving", gcs_source=gcs_source_test_url, gcs_destination_prefix=f"gs://{BUCKET_NAME}/{GCS_PREFIX}/batch_prediction", machine_type="n1-standard-4", sync=False, ) batch_predict_job.wait() bp_iter_outputs = batch_predict_job.iter_outputs() prediction_errors_stats = list() prediction_results = list() for blob in bp_iter_outputs: if blob.name.split("/")[-1].startswith("prediction.errors_stats"): prediction_errors_stats.append(blob.name) if blob.name.split("/")[-1].startswith("prediction.results"): prediction_results.append(blob.name) tags = list() for prediction_result in prediction_results: gfile_name = f"gs://{bp_iter_outputs.bucket.name}/{prediction_result}" with tf.io.gfile.GFile(name=gfile_name, mode="r") as gfile: for line in gfile.readlines(): line = json.loads(line) text = line["instance"]["text_vectorization_input"][0] prediction = line["prediction"] class_id = np.argmax(prediction) class_name = class_maps[class_id] tags.append([text, class_name]) import pandas as pd tags_df = pd.DataFrame(tags, columns=["question", "tag"]) tags_df.head() tags_df["tag"].value_counts() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Symbolic differentiation Step2: You can even ask sympy to give you a formula you can evaluate in a coding language Step3: And sympy can evaluate the formula itself Step4: A more complicated function Step5: Another complicated function Step6: But $f$ is just a polynomial! Is sympy clever enough to do the right thing? No. Step7: sympy does the right thing if we give it some help... Step8: Hand-coding derivatives Step9: This code is pretty mechanical to write Step10: This is fairly mechanical, similar to forward-mode Step12: If we use forward mode, we can only compute one direction at a time, effectively Step13: We've now traversed the loop with our work as many times as there are components in the vector. The forward evaluation for dot costs $O(n)$ and computing the gradient costs $O(n^2)$ because we have to do $O(n)$ for for each direction and there are $n$ directions. Step15: We get the same values in only $O(n)$ work! Step16: Example with linear function Step17: another example Step18: Software
<ASSISTANT_TASK:> Python Code: %matplotlib inline import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') import sympy from sympy.abc import x f = sympy.cos(x**sympy.pi) * sympy.log(x) f sympy.diff(f, x) sympy.ccode(f, 'y') sympy.fcode(f, 'y') f.evalf(40, subs={x: 1.9}) def g(x, m=np): y = x for i in range(2): # a = m.log(y) # b = y ** m.pi # c = m.cos(b) # y = c * a y = m.cos(y**m.pi) * m.log(y) return y gexpr = g(x, m=sympy) gexpr sympy.diff(gexpr, x) m = 8 #t = np.random.randn(m) t = np.arange(1,m+1) def f(x): y = 1 for i in range(m): y *= x - t[i] return y f(x) sympy.diff(f(x), x) sympy.expand( f(x) ) sympy.diff(sympy.expand( f(x) ), x) def gprime(x): y = x dy = 1 for i in range(2): a = np.log(y) da = 1/y * dy b = y ** np.pi db = np.pi * y ** (np.pi - 1) * dy c = np.cos(b) dc = -np.sin(b) * db y = c * a dy = dc * a + c * da return y, dy print('by hand', gprime(1.9)) def gprime_rev(x): # First compute all the values by going through the iteration forwards # I'm unrolling two iterations here for clarity ("static single assignment" form) # It is possible to write code that keeps the loop structure. a1 = np.log(x) b1 = x ** np.pi c1 = np.cos(b1) y1 = c1 * a1 a2 = np.log(y1) b2 = y1 ** np.pi c2 = np.cos(b2) y = c2 * a2 # Result # Now go backwards computing dy/d_ for each variable y_ = 1 y_c2 = y_ * a2 y_a2 = c2 * y_ y_b2 = -y_c2 * np.sin(b2) # dy/db2 = dy/dc2 dc2/db2 y_y1 = y_b2 * np.pi * y1 ** (np.pi - 1) + y_a2 / y1 y_c1 = y_y1 * a1 y_a1 = c1 * y_y1 y_b1 = -y_c1 * np.sin(b1) y_x = y_b1 * np.pi * x ** (np.pi - 1) + y_a1 / x return y, y_x print('forward', gprime(1.9)) print('reverse', gprime_rev(1.9)) def dot(c, x): n = len(c) sum = 0 for i in range(n): sum += c[i] * x[i] return sum n = 20 c = np.random.randn(n) x = np.random.randn(n) f = dot(c, x) f def dot_x(c, x, dx): Compute derivative in direction dx n = len(c) dsum = 0 for i in range(n): dsum += c[i] * dx[i] return dsum def grad_dot(c, x): n = len(c) I = np.eye(n) grad = np.zeros(n) for j in range(n): dx = I[:,j] grad[j] = dot_x(c, x, dx) return grad grad_dot(c, x) def grad_dot_rev(c, x): n = len(c) sum_ = np.zeros(n) for i in range(n): sum_[i] = c[i] return sum_ grad_dot_rev(c, x) # ! pip install jax jaxlib import jax import jax.numpy as jnp # def g_jax(x): # Same function as before, but using jnp in place of np. # y = x # for i in range(2): # y = jnp.cos(y**jnp.pi) * jnp.log(y) # return y g_jax = lambda x : g(x, m=jnp) gprime_jax = jax.grad(g_jax) print(gprime_jax(1.9)) print(gprime(1.9)[1]) n = 20 c = np.random.randn(n) y = np.random.randn(n) # SRB changing example a bit # Let h(y) = dot(y,c), then grad h = c h = lambda y : jnp.vdot(y,c) print("Gradient via JAX AD is") print( jax.grad(h)(y) ) # Alternatively, # jax.grad(jmp.vdot)(y,c) will pass in both y and c to the function # but only differentiation with respect to the first input (in this case, y) print("Gradient worked out by hand is") print( c ) m = 30 t = np.random.randn(m) def f(x): y = 1 for i in range(m): y *= x - t[i] return y f(x) x0 = t[0] + 1e-15 sympy.diff(f(x), x).evalf(25,subs={x: x0}) jax.grad(f)(x0) %%timeit sympy.diff(f(x), x).evalf(15,subs={x: x0}) %%timeit jax.grad(f)(x0) z = jnp.zeros(3) z[1] = 1 <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: At this point, we have our stations and trips data loaded into memory. Step2: Then, let's iterate over the stations DataFrame, and add in the node attributes. Step3: In order to answer the question of "which stations are important", we need to specify things a bit more. Perhaps a measure such as betweenness centrality or degree centrality may be appropriate here. Step4: Exercise Step5: Exercise Step6: Let's now try drawing the graph. Step7: Exercise Step8: In this visual, nodes are sorted from highest connectivity to lowest connectivity in the unfiltered graph.
<ASSISTANT_TASK:> Python Code: # This block of code checks to make sure that a particular directory is present. if "divvy_2013" not in os.listdir('datasets/'): print('Unzip the divvy_2013.zip file in the datasets folder.') stations = pd.read_csv('datasets/divvy_2013/Divvy_Stations_2013.csv', parse_dates=['online date'], index_col='id', encoding='utf-8') stations trips = pd.read_csv('datasets/divvy_2013/Divvy_Trips_2013.csv', parse_dates=['starttime', 'stoptime'], index_col=['trip_id']) trips = trips.sort() trips G = nx.DiGraph() for r, d in stations.iterrows(): # call the pandas DataFrame row-by-row iterator G.add_node(r, attr_dict=d.to_dict()) # # Run the following code at your own risk :) # for r, d in trips.iterrows(): # start = d['from_station_id'] # end = d['to_station_id'] # if (start, end) not in G.edges(): # G.add_edge(start, end, count=1) # else: # G.edge[start][end]['count'] += 1 for (start, stop), d in trips.groupby(['from_station_id', 'to_station_id']): G.add_edge(start, stop, count=len(d)) G.edges(data=True) len(G.edges()) len(G.nodes()) from collections import Counter # Count the number of edges that have x trips recorded on them. trip_count_distr = ______________________________ # Then plot the distribution of these plt.scatter(_______________, _______________, alpha=0.1) plt.yscale('log') plt.xlabel('num. of trips') plt.ylabel('num. of edges') # Filter the edges to just those with more than 100 trips. G_filtered = G.copy() for u, v, d in G.edges(data=True): # Fill in your code here. len(G_filtered.edges()) # Fill in your code here. nodes = sorted(_________________, key=lambda x:_________________) edges = ___________ edgeprops = dict(alpha=0.1) nodecolor = plt.cm.viridis(np.arange(len(nodes)) / len(nodes)) fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(111) c = CircosPlot(nodes, edges, radius=10, ax=ax, fig=fig, edgeprops=edgeprops, nodecolor=nodecolor) c.draw() plt.savefig('images/divvy.png', dpi=300) nx.write_gpickle(G, 'datasets/divvy_2013/divvy_graph.pkl') G = nx.read_gpickle('datasets/divvy_2013/divvy_graph.pkl') <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Load house sales data Step2: Split data into training and testing Step3: Useful SFrame summary functions Step4: As we see we get the same answer both ways Step5: Aside Step6: We can test that our function works by passing it something where we know the answer. In particular we can generate a feature and then put the output exactly on a line Step7: Now that we know it works let's build a regression model for predicting price based on sqft_living. Rembember that we train on train_data! Step8: Predicting Values Step9: Now that we can calculate a prediction given the slop and intercept let's make a prediction. Use (or alter) the following to find out the estimated price for a house with 2650 squarefeet according to the squarefeet model we estiamted above. Step10: Residual Sum of Squares Step11: Let's test our get_residual_sum_of_squares function by applying it to the test model where the data lie exactly on a line. Since they lie exactly on a line the residual sum of squares should be zero! Step12: Now use your function to calculate the RSS on training data from the squarefeet model calculated above. Step13: Predict the squarefeet given price Step14: Now that we have a function to compute the squarefeet given the price from our simple regression model let's see how big we might expect a house that coses $800,000 to be. Step15: New Model Step16: Test your Linear Regression Algorithm
<ASSISTANT_TASK:> Python Code: import graphlab sales = graphlab.SFrame('kc_house_data.gl/') train_data,test_data = sales.random_split(.8,seed=0) # Let's compute the mean of the House Prices in King County in 2 different ways. prices = sales['price'] # extract the price column of the sales SFrame -- this is now an SArray # recall that the arithmetic average (the mean) is the sum of the prices divided by the total number of houses: sum_prices = prices.sum() num_houses = prices.size() # when prices is an SArray .size() returns its length avg_price_1 = sum_prices/num_houses avg_price_2 = prices.mean() # if you just want the average, the .mean() function print "average price via method 1: " + str(avg_price_1) print "average price via method 2: " + str(avg_price_2) # if we want to multiply every price by 0.5 it's a simple as: half_prices = 0.5*prices # Let's compute the sum of squares of price. We can multiply two SArrays of the same length elementwise also with * prices_squared = prices*prices sum_prices_squared = prices_squared.sum() # price_squared is an SArray of the squares and we want to add them up. print "the sum of price squared is: " + str(sum_prices_squared) def simple_linear_regression(input_feature, output): # compute the mean of input_feature and output x = input_feature y = output avg_x = x.mean() avg_y = y.mean() n = x.size() # compute the product of the output and the input_feature and its mean # compute the squared value of the input_feature and its mean # use the formula for the slope x_err = x-avg_x slope = (y*x_err).sum()/(x*x_err).sum() # use the formula for the intercept intercept = y.mean() - x.mean()*slope return (intercept, slope) test_feature = graphlab.SArray(range(5)) test_output = graphlab.SArray(1 + 1*test_feature) (test_intercept, test_slope) = simple_linear_regression(test_feature, test_output) print "Intercept: " + str(test_intercept) print "Slope: " + str(test_slope) sqft_intercept, sqft_slope = simple_linear_regression(train_data['sqft_living'], train_data['price']) print "Intercept: " + str(sqft_intercept) print "Slope: " + str(sqft_slope) def get_regression_predictions(input_feature, intercept, slope): # calculate the predicted values: predicted_values = intercept + slope * input_feature return predicted_values my_house_sqft = 2650 estimated_price = get_regression_predictions(my_house_sqft, sqft_intercept, sqft_slope) print "The estimated price for a house with %d squarefeet is $%.2f" % (my_house_sqft, estimated_price) def get_residual_sum_of_squares(input_feature, output, intercept, slope): # First get the predictions predictions = get_regression_predictions(input_feature, intercept, slope) # then compute the residuals (since we are squaring it doesn't matter which order you subtract) resd = predictions-output # square the residuals and add them up RSS = (resd*resd).sum() return(RSS) print get_residual_sum_of_squares(test_feature, test_output, test_intercept, test_slope) # should be 0.0 rss_prices_on_sqft = get_residual_sum_of_squares(train_data['sqft_living'], train_data['price'], sqft_intercept, sqft_slope) print 'The RSS of predicting Prices based on Square Feet is : ' + str(rss_prices_on_sqft) def inverse_regression_predictions(output, intercept, slope): # solve output = intercept + slope*input_feature for input_feature. Use this equation to compute the inverse predictions: estimated_feature = (output - intercept)/slope return estimated_feature my_house_price = 800000 estimated_squarefeet = inverse_regression_predictions(my_house_price, sqft_intercept, sqft_slope) print "The estimated squarefeet for a house worth $%.2f is %d" % (my_house_price, estimated_squarefeet) # Estimate the slope and intercept for predicting 'price' based on 'bedrooms' bedrooms_intercept, bedrooms_slope = simple_linear_regression(train_data['bedrooms'], train_data['price']) # Compute RSS when using bedrooms on TEST data: get_residual_sum_of_squares(test_data['bedrooms'], test_data['price'], sqft_intercept, sqft_slope) # Compute RSS when using squarfeet on TEST data: get_residual_sum_of_squares(test_data['sqft_living'], test_data['price'], sqft_intercept, sqft_slope) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercícios - Métodos e Funções
<ASSISTANT_TASK:> Python Code: # Versão da Linguagem Python from platform import python_version print('Versão da Linguagem Python Usada Neste Jupyter Notebook:', python_version()) # Exercício 1 - Crie uma função que imprima a sequência de números pares entre 1 e 20 (a função não recebe parâmetro) e # depois faça uma chamada à função para listar os números def listaPar(): for i in range(2, 21, 2): print(i) listaPar() # Exercício 2 - Crie uam função que receba uma string como argumento e retorne a mesma string em letras maiúsculas. # Faça uma chamada à função, passando como parâmetro uma string def listaString(texto): print(texto.upper()) return listaString('Rumo à Análise de Dados') # Exercício 3 - Crie uma função que receba como parâmetro uma lista de 4 elementos, adicione 2 elementos a lista e # imprima a lista def novaLista(lista): print(lista.append(5)) print(lista.append(6)) lista1 = [1, 2, 3, 4] novaLista(lista1) print(lista1) # Exercício 4 - Crie uma função que receba um argumento formal e uma possível lista de elementos. Faça duas chamadas # à função, com apenas 1 elemento e na segunda chamada com 4 elementos def printNum( arg1, *lista ): print (arg1) for i in lista: print (i) return; # Chamada à função printNum( 100 ) printNum( 'A', 'B', 'C' ) # Exercício 5 - Crie uma função anônima e atribua seu retorno a uma variável chamada soma. A expressão vai receber 2 # números como parâmetro e retornar a soma deles soma = lambda arg1, arg2: arg1 + arg2 print ("A soma é : ", soma( 452, 298 )) # Exercício 6 - Execute o código abaixo e certifique-se que compreende a diferença entre variável global e local total = 0 def soma( arg1, arg2 ): total = arg1 + arg2; print ("Dentro da função o total é: ", total) return total; soma( 10, 20 ); print ("Fora da função o total é: ", total) # Exercício 7 - Abaixo você encontra uma lista com temperaturas em graus Celsius # Crie uma função anônima que converta cada temperatura para Fahrenheit # Dica: para conseguir realizar este exercício, você deve criar sua função lambda, dentro de uma função # (que será estudada no próximo capítulo). Isso permite aplicar sua função a cada elemento da lista # Como descobrir a fórmula matemática que converte de Celsius para Fahrenheit? Pesquise!!! Celsius = [39.2, 36.5, 37.3, 37.8] Fahrenheit = map(lambda x: (float(9)/5)*x + 32, Celsius) print (list(Fahrenheit)) # Exercício 8 # Crie um dicionário e liste todos os métodos e atributos do dicionário dic = {'k1': 'Natal', 'k2': 'Recife'} dir(dic) import pandas as pd pd.__version__ # Exercício 9 # Abaixo você encontra a importação do Pandas, um dos principais pacotes Python para análise de dados. # Analise atentamente todos os métodos disponíveis. Um deles você vai usar no próximo exercício. import pandas as pd dir(pd) # ************* Desafio ************* (pesquise na documentação Python) # Exercício 10 - Crie uma função que receba o arquivo abaixo como argumento e retorne um resumo estatístico descritivo # do arquivo. Dica, use Pandas e um de seus métodos, describe() # Arquivo: "binary.csv" import pandas as pd file_name = "binary.csv" def retornaArq(file_name): df = pd.read_csv(file_name) return df.describe() retornaArq(file_name) <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Plotting Histogram Step2: By default, hist is using 10 equal bins to plot the data, we can increase this no by using bins=n Step3: Another important keyword parameter of hist is "normed". "normed" is optional and the default value is 'False'. If it is set to 'True', the first element of the return tuple will be the counts normalized to form a probability density, Step4: If both the parameters 'normed' and 'stacked' are set to 'True', the sum of the histograms is normalized to 1. Step5: can plot it as a cumulative distribution function as well by setting the parameter 'cumulative' Step6: Bar Plots
<ASSISTANT_TASK:> Python Code: # import import numpy as np import matplotlib.pyplot as plt %matplotlib inline # generating some data points X = np.random.random_integers(20, 50, 1000) Y = np.random.random_integers(20, 50, 1000) plt.hist(X) plt.xlabel("Value of X") plt.ylabel("Freq") gaussian_numbers = np.random.normal(size=10000) plt.hist(gaussian_numbers) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() n, bins, patches = plt.hist(gaussian_numbers) print("n: ",n, np.sum(n)) # freq print("bins: ", bins) print("patches: ", patches) for p in patches: print(p,) n, bins, patches = plt.hist(gaussian_numbers, bins=100) n, bins, patches = plt.hist(gaussian_numbers, bins=100, normed=True) plt.hist(gaussian_numbers, bins=100, normed=True, stacked=True, edgecolor="#6A9662", color="#DDFFDD") plt.show() plt.hist(gaussian_numbers, bins=100, normed=True, stacked=True, cumulative=True) plt.show() bars = plt.bar([1,2,3,4], [1,4,9,16]) bars[0].set_color('green') plt.show() f=plt.figure() ax=f.add_subplot(1,1,1) ax.bar([1,2,3,4], [1,4,9,16]) children = ax.get_children() children[3].set_color('g') years = ('2010', '2011', '2012', '2013', '2014') visitors = (1241, 50927, 162242, 222093, 296665 / 8 * 12) index = np.arange(len(visitors)) bar_width = 1.0 plt.bar(index, visitors, bar_width, color="green") plt.xticks(index + bar_width / 2, years) # labels get centered plt.show() <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description:
<ASSISTANT_TASK:> Python Code:: # one hot encode target sequence def encode_output(sequences, vocab_size): ylist = list() for sequence in sequences: encoded = to_categorical(sequence, num_classes=vocab_size) ylist.append(encoded) y = array(ylist) y = y.reshape(sequences.shape[0], sequences.shape[1], vocab_size) return y <END_TASK>
<SYSTEM_TASK:> Given the following text description, write Python code to implement the functionality described below step by step <END_TASK> <USER_TASK:> Description: Step1: Exercicio 2 - Juros Compostos Step2: Exercicio 3 - Imposto de renda Step3: Exercício 4 - Somatória Step4: Exercicio 5 - Palíndromo Step5: Exercício 6 - Menor e maior da lista Step6: Exercício 7 - N-ímpares consecutivos
<ASSISTANT_TASK:> Python Code: def CaixaEletronico(valor): notas50 = valor // 50 valor = valor % 50 notas20 = valor // 20 valor = valor % 20 notas10 = valor // 10 valor = valor % 10 notas5 = valor // 5 valor = valor % 5 notas1 = valor // 1 return (notas50, notas20, notas10, notas5, notas1) CaixaEletronico(184) def JurosCompostos(montante,taxa,meses): correcao = 1 for i in range(meses): correcao *= (1+(taxa/100)) return montante*correcao, (correcao - 1)*100 print(JurosCompostos(1000,1,12)) def ImpostoRenda(salario): salario = salario * 0.89 if (salario <= 24000): return salario else: return salario - (0.15 * (salario-24000)) print(ImpostoRenda(30000)) def Soma(n): soma = 0 for i in range(1,n+1): soma = soma + i*( (-1)**i) return soma print(Soma(10)) def Palindromo(nome): n = len(nome) k = 0 while k<n/2: if nome[k] != nome[n-k-1]: return False k = k+1 return True print(Palindromo('RADAR')) print(Palindromo('Python')) def MaiorMenor(lista): menor = lista[0] maior = lista[0] for elemento in lista: if elemento > maior: maior = elemento if elemento < menor: menor = elemento return maior, menor lista = [1,2,4,16,32,64,-128] print(MaiorMenor(lista)) def Consecutivos(n): soma = 0 for i in range(1,n+1): soma += i impares = [x for x in range(2*soma) if x%2!=0 ] return impares[soma-n:soma] print(Consecutivos(4), sum(Consecutivos(4)), 4**3) type( (1,2)) <END_TASK>