import os from datasets import load_from_disk, DatasetDict, concatenate_datasets # Get all batch directories batch_dirs = [d for d in os.listdir("processed_dataset") if d.startswith("batch_")] batch_dirs.sort(key=lambda x: int(x.split('_')[1])) # Sort numerically # Load each batch and combine them processed_batches = [] for batch_dir in batch_dirs: batch_path = os.path.join("processed_dataset", batch_dir) batch_dataset = load_from_disk(batch_path) processed_batches.append(batch_dataset) # Combine all batches into one dataset full_dataset = concatenate_datasets(processed_batches) # Split into train and test # First shuffle the dataset with a fixed seed for reproducibility shuffled_dataset = full_dataset.shuffle(seed=42) # Get the last 975 samples for test test_size = 975 processed_test = shuffled_dataset.select(range(test_size)) processed_train = shuffled_dataset.select(range(test_size, len(shuffled_dataset))) # Create the dataset_dict with the new split dataset_dict = DatasetDict({ "train": processed_train, "test": processed_test }) # Verify the loading and splitting was successful print("\nDataset split information:") print(f"Total examples: {len(shuffled_dataset)}") print(f"Training examples: {len(dataset_dict['train'])}") print(f"Test examples: {len(dataset_dict['test'])}") # Optional: Print the first example from each split to verify the structure print("\nFirst training example structure:") print(dataset_dict['train'][0].keys()) print("\nFirst test example structure:") print(dataset_dict['test'][0].keys()) from transformers import WhisperForConditionalGeneration model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small") model.generation_config.language = "malayalam" model.generation_config.task = "transcribe" model.generation_config.forced_decoder_ids = None from transformers import WhisperProcessor processor = WhisperProcessor.from_pretrained("openai/whisper-small", language="Malayalam", task="transcribe") import torch from dataclasses import dataclass from typing import Any, Dict, List, Union @dataclass @dataclass class DataCollatorSpeechSeq2SeqWithPadding: processor: Any decoder_start_token_id: int max_target_length: int = 448 # Add a parameter to control max length def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lengths and need different padding methods # first treat the audio inputs by simply returning torch tensors input_features = [{"input_features": feature["input_features"]} for feature in features] batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") # get the tokenized label sequences label_features = [{"input_ids": feature["labels"]} for feature in features] # pad the labels to max length labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") # Truncate labels to max_target_length labels = labels_batch["input_ids"] if labels.shape[1] > self.max_target_length: labels = labels[:, :self.max_target_length] # replace padding with -100 to ignore loss correctly labels = labels.masked_fill(labels_batch.attention_mask[:, :labels.shape[1]].ne(1), -100) # if bos token is appended in previous tokenization step, # cut bos token here as it's append later anyways if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): labels = labels[:, 1:] batch["labels"] = labels return batch # When initializing the data collator, you can now specify the max length data_collator = DataCollatorSpeechSeq2SeqWithPadding( processor=processor, decoder_start_token_id=model.config.decoder_start_token_id, max_target_length=448 # Explicitly set the max length ) import evaluate metric = evaluate.load("wer") def compute_metrics(pred): pred_ids = pred.predictions label_ids = pred.label_ids # replace -100 with the pad_token_id label_ids[label_ids == -100] = tokenizer.pad_token_id # we do not want to group tokens when computing the metrics pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) wer = 100 * metric.compute(predictions=pred_str, references=label_str) return {"wer": wer} from transformers import Seq2SeqTrainingArguments training_args = Seq2SeqTrainingArguments( output_dir="./whisper-small-mal", # change to a repo name of your choice per_device_train_batch_size=16, gradient_accumulation_steps=1, # increase by 2x for every 2x decrease in batch size learning_rate=1e-5, warmup_steps=500, max_steps=4000, gradient_checkpointing=True, fp16=True, fp16_full_eval=True, half_precision_backend='auto', evaluation_strategy="steps", per_device_eval_batch_size=8, predict_with_generate=True, generation_max_length=225, save_steps=1000, eval_steps=20, logging_steps=25, report_to=["tensorboard"], load_best_model_at_end=True, metric_for_best_model="wer", greater_is_better=False, push_to_hub=True, ) from transformers import Seq2SeqTrainer trainer = Seq2SeqTrainer( args=training_args, model=model, train_dataset=dataset_dict["train"], eval_dataset=dataset_dict["test"], data_collator=data_collator, compute_metrics=compute_metrics, tokenizer=processor.feature_extractor, ) processor.save_pretrained(training_args.output_dir) trainer.train()