import os import json import librosa from tokenizers import Tokenizer from tokenizers.models import WordPiece from tokenizers.pre_tokenizers import Whitespace from tokenizers.trainers import WordPieceTrainer import numpy as np class MalayalamDatasetTokenizer: def __init__(self, transcription_dir, wav_dir, vocab_size=16000): """ Initialize tokenizer with directories for transcriptions and audio files :param transcription_dir: Path to folder containing text transcriptions :param wav_dir: Path to folder containing WAV audio files :param vocab_size: Size of the vocabulary for text tokenization """ self.transcription_dir = transcription_dir self.wav_dir = wav_dir # Initialize text tokenizer self.text_tokenizer = self._create_text_tokenizer(vocab_size) # Audio tokenization parameters self.audio_tokenizer = { "sample_rate": 16000, # Standard for speech models "n_mfcc": 13, # Number of MFCCs to extract "n_fft": 2048, # FFT window size "hop_length": 512 # Hop length between frames } def _create_text_tokenizer(self, vocab_size): """ Create a WordPiece tokenizer for Malayalam text """ tokenizer = Tokenizer(WordPiece(unk_token="[UNK]")) tokenizer.pre_tokenizer = Whitespace() special_tokens = ["[PAD]", "[UNK]", "[CLS]", "[SEP]"] trainer = WordPieceTrainer( vocab_size=vocab_size, special_tokens=special_tokens ) return tokenizer def _get_matched_files(self): """ Find matching transcription and audio files :return: List of tuples (transcription_path, audio_path) """ matched_files = [] # Get all transcription files for trans_file in os.listdir(self.transcription_dir): # Remove extension to match with audio file base_name = os.path.splitext(trans_file)[0] # Check for corresponding WAV file wav_path = os.path.join(self.wav_dir, base_name + '.wav') trans_path = os.path.join(self.transcription_dir, trans_file) if os.path.exists(wav_path): matched_files.append((trans_path, wav_path)) return matched_files def process_dataset(self): """ Process entire dataset, tokenizing text and extracting audio features :return: Processed dataset with tokenized text and audio features """ dataset = [] matched_files = self._get_matched_files() for trans_path, wav_path in matched_files: # Read transcription with open(trans_path, 'r', encoding='utf-8') as f: transcription = f.read().strip() # Tokenize text text_tokens = self.text_tokenizer.encode(transcription).ids # Extract audio features audio_features = self._extract_audio_features(wav_path) dataset.append({ 'transcription': transcription, 'text_tokens': text_tokens, 'audio_features': audio_features, 'audio_path': wav_path, 'transcription_path': trans_path }) return dataset def _extract_audio_features(self, audio_path): """ Extract MFCC features from audio file :param audio_path: Path to WAV file :return: Extracted audio features """ # Load audio file audio, sr = librosa.load( audio_path, sr=self.audio_tokenizer['sample_rate'] ) # Extract MFCCs mfccs = librosa.feature.mfcc( y=audio, sr=sr, n_mfcc=self.audio_tokenizer['n_mfcc'], n_fft=self.audio_tokenizer['n_fft'], hop_length=self.audio_tokenizer['hop_length'] ) return mfccs.T.tolist() def train_text_tokenizer(self): """ Train text tokenizer on all transcription files """ # Collect all transcriptions transcriptions = [] for trans_path, _ in self._get_matched_files(): with open(trans_path, 'r', encoding='utf-8') as f: transcriptions.append(f.read().strip()) # Train tokenizer self.text_tokenizer.train_from_iterator(transcriptions) def save_dataset(self, output_path): """ Save processed dataset to JSON :param output_path: Path to save processed dataset """ dataset = self.process_dataset() with open(output_path, 'w', encoding='utf-8') as f: json.dump(dataset, f, ensure_ascii=False, indent=2) print(f"Saved dataset to {output_path}") def save_tokenizer(self, output_dir): """ Save tokenizer configurations :param output_dir: Directory to save tokenizer files """ os.makedirs(output_dir, exist_ok=True) # Save text tokenizer vocabulary with open(os.path.join(output_dir, 'text_tokenizer.json'), 'w', encoding='utf-8') as f: json.dump({ 'vocab': self.text_tokenizer.get_vocab(), 'model_type': 'WordPiece' }, f, ensure_ascii=False, indent=2) # Save audio tokenizer configuration with open(os.path.join(output_dir, 'audio_tokenizer.json'), 'w') as f: json.dump(self.audio_tokenizer, f, indent=2) # Example usage if __name__ == "__main__": # Initialize tokenizer tokenizer = MalayalamDatasetTokenizer( transcription_dir='transcription', wav_dir='wav' ) # Train text tokenizer tokenizer.train_text_tokenizer() # Process and save dataset # tokenizer.save_dataset('malayalam_dataset.json') # Save tokenizer configurations tokenizer.save_tokenizer('malayalam_tokenizer')