danbraunai-apollo's picture
Add upload script
6be2a8b verified
"""
Taken and adapated from Alan Cooney's
https://github.com/ai-safety-foundation/sparse_autoencoder/tree/main/sparse_autoencoder.
"""
import subprocess
from collections.abc import Mapping, Sequence
from dataclasses import dataclass
from typing import TypedDict
from datasets import (
Dataset,
DatasetDict,
VerificationMode,
load_dataset,
)
from huggingface_hub import HfApi
from jaxtyping import Int
from pydantic import PositiveInt, validate_call
from torch import Tensor
from transformers import AutoTokenizer, PreTrainedTokenizerBase
class GenericTextDataBatch(TypedDict):
"""Generic Text Dataset Batch.
Assumes the dataset provides a 'text' field with a list of strings.
"""
text: list[str]
meta: list[dict[str, dict[str, str]]] # Optional, depending on the dataset structure.
TokenizedPrompt = list[int]
"""A tokenized prompt."""
class TokenizedPrompts(TypedDict):
"""Tokenized prompts."""
input_ids: list[TokenizedPrompt]
class TorchTokenizedPrompts(TypedDict):
"""Tokenized prompts prepared for PyTorch."""
input_ids: Int[Tensor, "batch pos vocab"]
class TextDataset:
"""Generic Text Dataset for any text-based dataset from Hugging Face."""
tokenizer: PreTrainedTokenizerBase
def preprocess(
self,
source_batch: GenericTextDataBatch,
*,
context_size: int,
) -> TokenizedPrompts:
"""Preprocess a batch of prompts.
Tokenizes a batch of text data and packs into context_size samples. An eos token is added
to the end of each document after tokenization.
Args:
source_batch: A batch of source data, including 'text' with a list of strings.
context_size: Context size for tokenized prompts.
Returns:
Tokenized prompts.
"""
prompts: list[str] = source_batch["text"]
tokenized_prompts = self.tokenizer(prompts, truncation=False, padding=False)
all_tokens = []
for document_tokens in tokenized_prompts[self._dataset_column_name]: # type: ignore
all_tokens.extend(document_tokens + [self.tokenizer.eos_token_id])
# Ignore incomplete chunks
chunks = [
all_tokens[i : i + context_size]
for i in range(0, len(all_tokens), context_size)
if len(all_tokens[i : i + context_size]) == context_size
]
return {"input_ids": chunks}
@validate_call(config={"arbitrary_types_allowed": True})
def __init__(
self,
dataset_path: str,
tokenizer: PreTrainedTokenizerBase,
context_size: PositiveInt = 256,
load_revision: str = "main",
dataset_dir: str | None = None,
dataset_files: str | Sequence[str] | Mapping[str, str | Sequence[str]] | None = None,
dataset_split: str | None = None,
dataset_column_name: str = "input_ids",
n_processes_preprocessing: PositiveInt | None = None,
preprocess_batch_size: PositiveInt = 1000,
):
"""Initialize a generic text dataset from Hugging Face.
Args:
dataset_path: Path to the dataset on Hugging Face (e.g. `'monology/pile-uncopyright'`).
tokenizer: Tokenizer to process text data.
context_size: The context size to use when returning a list of tokenized prompts.
*Towards Monosemanticity: Decomposing Language Models With Dictionary Learning* used
a context size of 250.
load_revision: The commit hash or branch name to download from the source dataset.
dataset_dir: Defining the `data_dir` of the dataset configuration.
dataset_files: Path(s) to source data file(s).
dataset_split: Dataset split (e.g., 'train'). If None, process all splits.
dataset_column_name: The column name for the prompts.
n_processes_preprocessing: Number of processes to use for preprocessing.
preprocess_batch_size: Batch size for preprocessing (tokenizing prompts).
"""
self.tokenizer = tokenizer
self.context_size = context_size
self._dataset_column_name = dataset_column_name
# Load the dataset
dataset = load_dataset(
dataset_path,
revision=load_revision,
streaming=False, # We need to pre-download the dataset to upload it to the hub.
split=dataset_split,
data_dir=dataset_dir,
data_files=dataset_files,
verification_mode=VerificationMode.NO_CHECKS, # As it fails when data_files is set
)
# If split is not None, will return a Dataset instance. Convert to DatasetDict.
if isinstance(dataset, Dataset):
assert dataset_split is not None
dataset = DatasetDict({dataset_split: dataset})
assert isinstance(dataset, DatasetDict)
for split in dataset:
print(f"Processing split: {split}")
# Setup preprocessing (we remove all columns except for input ids)
remove_columns: list[str] = list(next(iter(dataset[split])).keys()) # type: ignore
if "input_ids" in remove_columns:
remove_columns.remove("input_ids")
# Tokenize and chunk the prompts
mapped_dataset = dataset[split].map(
self.preprocess,
batched=True,
batch_size=preprocess_batch_size,
fn_kwargs={"context_size": context_size},
remove_columns=remove_columns,
num_proc=n_processes_preprocessing,
)
dataset[split] = mapped_dataset.shuffle()
self.dataset = dataset
@validate_call
def push_to_hugging_face_hub(
self,
repo_id: str,
commit_message: str = "Upload preprocessed dataset using sparse_autoencoder.",
max_shard_size: str = "500MB",
revision: str = "main",
*,
private: bool = False,
) -> None:
"""Share preprocessed dataset to Hugging Face hub.
Motivation:
Pre-processing a dataset can be time-consuming, so it is useful to be able to share the
pre-processed dataset with others. This function allows you to do that by pushing the
pre-processed dataset to the Hugging Face hub.
Warning:
You must be logged into HuggingFace (e.g with `huggingface-cli login` from the terminal)
to use this.
Warning:
This will only work if the dataset is not streamed (i.e. if `pre_download=True` when
initializing the dataset).
Args:
repo_id: Hugging Face repo ID to save the dataset to (e.g. `username/dataset_name`).
commit_message: Commit message.
max_shard_size: Maximum shard size (e.g. `'500MB'`).
revision: Branch to push to.
private: Whether to save the dataset privately.
"""
self.dataset.push_to_hub(
repo_id=repo_id,
commit_message=commit_message,
max_shard_size=max_shard_size,
private=private,
revision=revision,
)
@dataclass
class DatasetToPreprocess:
"""Dataset to preprocess info."""
source_path: str
"""Source path from HF (e.g. `roneneldan/TinyStories`)."""
tokenizer_name: str
"""HF tokenizer name (e.g. `gpt2`)."""
load_revision: str = "main"
"""Commit hash or branch name to download from the source dataset."""
data_dir: str | None = None
"""Data directory to download from the source dataset."""
data_files: list[str] | None = None
"""Data files to download from the source dataset."""
hugging_face_username: str = "apollo-research"
"""HF username for the upload."""
private: bool = False
"""Whether the HF dataset should be private or public."""
context_size: int = 2048
"""Number of tokens in a single sample. gpt2 uses 1024, pythia uses 2048."""
split: str | None = None
"""Dataset split to download from the source dataset. If None, process all splits."""
@property
def source_alias(self) -> str:
"""Create a source alias for the destination dataset name.
Returns:
The modified source path as source alias.
"""
return self.source_path.replace("/", "-")
@property
def tokenizer_alias(self) -> str:
"""Create a tokenizer alias for the destination dataset name.
Returns:
The modified tokenizer name as tokenizer alias.
"""
return self.tokenizer_name.replace("/", "-")
@property
def destination_repo_name(self) -> str:
"""Destination repo name.
Returns:
The destination repo name.
"""
split_str = f"{self.split}-" if self.split else ""
return f"{self.source_alias}-{split_str}tokenizer-{self.tokenizer_alias}"
@property
def destination_repo_id(self) -> str:
"""Destination repo ID.
Returns:
The destination repo ID.
"""
return f"{self.hugging_face_username}/{self.destination_repo_name}"
def upload_datasets(datasets_to_preprocess: list[DatasetToPreprocess]) -> None:
"""Upload datasets to HF.
Warning:
Assumes you have already created the corresponding repos on HF.
Args:
datasets_to_preprocess: List of datasets to preprocess.
Raises:
ValueError: If the repo doesn't exist.
"""
repositories_updating = [dataset.destination_repo_id for dataset in datasets_to_preprocess]
print("Updating repositories:\n" "\n".join(repositories_updating))
for dataset in datasets_to_preprocess:
print("Processing dataset: ", dataset.source_path)
# Preprocess
tokenizer = AutoTokenizer.from_pretrained(dataset.tokenizer_name)
text_dataset = TextDataset(
dataset_path=dataset.source_path,
tokenizer=tokenizer,
dataset_files=dataset.data_files,
dataset_dir=dataset.data_dir,
dataset_split=dataset.split,
context_size=dataset.context_size,
load_revision=dataset.load_revision,
)
# size_in_bytes and info gives info about the whole dataset regardless of the split index,
# so we just get the first split.
split = next(iter(text_dataset.dataset))
print("Dataset info:")
print(f"Size: {text_dataset.dataset[split].size_in_bytes / 1e9:.2f} GB") # type: ignore
print("Info: ", text_dataset.dataset[split].info)
# Upload
text_dataset.push_to_hugging_face_hub(
repo_id=dataset.destination_repo_id, private=dataset.private
)
# Also upload the current file to the repo for reproducibility and transparency
api = HfApi()
api.upload_file(
path_or_fileobj=__file__,
path_in_repo="upload_script.py",
repo_id=dataset.destination_repo_id,
repo_type="dataset",
commit_message="Add upload script",
)
if __name__ == "__main__":
# Check that the user is signed in to huggingface-cli
try:
result = subprocess.run(
["huggingface-cli", "whoami"], check=True, capture_output=True, text=True
)
if "Not logged in" in result.stdout:
print("Please sign in to huggingface-cli using `huggingface-cli login`.")
raise Exception("You are not logged in to huggingface-cli.")
except subprocess.CalledProcessError:
print("An error occurred while checking the login status.")
raise
datasets: list[DatasetToPreprocess] = [
DatasetToPreprocess(
source_path="roneneldan/TinyStories",
# Paper says gpt-neo tokenizer, and e.g. EleutherAI/gpt-neo-125M uses the same tokenizer
# as gpt2. They also suggest using gpt2 in (https://github.com/EleutherAI/gpt-neo).
tokenizer_name="gpt2",
hugging_face_username="apollo-research",
context_size=512,
),
DatasetToPreprocess(
source_path="Skylion007/openwebtext",
tokenizer_name="gpt2",
hugging_face_username="apollo-research",
context_size=1024,
),
DatasetToPreprocess(
source_path="Skylion007/openwebtext",
tokenizer_name="EleutherAI/gpt-neox-20b",
hugging_face_username="apollo-research",
context_size=2048,
),
DatasetToPreprocess(
source_path="monology/pile-uncopyrighted",
tokenizer_name="gpt2",
hugging_face_username="apollo-research",
context_size=1024,
# Get just the first few (each file is 11GB so this should be enough for a large dataset)
data_files=[
"train/00.jsonl.zst",
"train/01.jsonl.zst",
"train/02.jsonl.zst",
"train/03.jsonl.zst",
"train/04.jsonl.zst",
],
),
DatasetToPreprocess(
source_path="monology/pile-uncopyrighted",
tokenizer_name="EleutherAI/gpt-neox-20b",
hugging_face_username="apollo-research",
private=False,
context_size=2048,
data_files=[
"train/00.jsonl.zst",
"train/01.jsonl.zst",
"train/02.jsonl.zst",
"train/03.jsonl.zst",
"train/04.jsonl.zst",
],
),
]
upload_datasets(datasets)