Francisco Castillo commited on
Commit
9772109
1 Parent(s): e5ede65

First commit

Browse files
.gitattributes CHANGED
@@ -49,3 +49,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
52
+ production.csv filter=lfs diff=lfs merge=lfs -text
53
+ training.csv filter=lfs diff=lfs merge=lfs -text
54
+ validation.csv filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ language:
7
+ - en
8
+ license:
9
+ - mit
10
+ multilinguality:
11
+ - monolingual
12
+ pretty_name: sentiment-classification-reviews-with-drift
13
+ size_categories:
14
+ - 10K<n<100K
15
+ task_categories:
16
+ - text-classification
17
+ task_ids:
18
+ - sentiment-classification
19
+ ---
20
+
21
+ # Dataset Card for `reviews_with_drift`
22
+
23
+ ## Table of Contents
24
+ - [Table of Contents](#table-of-contents)
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
28
+ - [language](#language)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-fields)
32
+ - [Data Splits](#data-splits)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+ - [Contributions](#contributions)
47
+
48
+ ## Dataset Description
49
+
50
+ ### Dataset Summary
51
+
52
+ This dataset was crafted to be used in our tutorial [Link to the tutorial when ready]. It consists on a large Movie Review Dataset mixed with some reviews from a Hotel Review Dataset. The training/validation set are purely obtained from the Movie Review Dataset while the production set is mixed. Some other features have been added (`age`, `gender`, `context`) as well as a made up timestamp `prediction_ts` of when the inference took place.
53
+
54
+ ### Supported Tasks and Leaderboards
55
+
56
+ `text-classification`, `sentiment-classification`: The dataset is mainly used for text classification: given the text, predict the sentiment (positive or negative).
57
+
58
+ ### language
59
+
60
+ Text is mainly written in english.
61
+
62
+ ## Dataset Structure
63
+
64
+ ### Data Instances
65
+
66
+ [More Information Needed]
67
+
68
+ ### Data Fields
69
+
70
+ [More Information Needed]
71
+
72
+ ### Data Splits
73
+
74
+ [More Information Needed]
75
+
76
+ ## Dataset Creation
77
+
78
+ ### Curation Rationale
79
+
80
+ [More Information Needed]
81
+
82
+ ### Source Data
83
+
84
+ [More Information Needed]
85
+
86
+ #### Initial Data Collection and Normalization
87
+
88
+ [More Information Needed]
89
+
90
+ #### Who are the source language producers?
91
+
92
+ [More Information Needed]
93
+
94
+ ### Annotations
95
+
96
+ [More Information Needed]
97
+
98
+ #### Annotation process
99
+
100
+ [More Information Needed]
101
+
102
+ #### Who are the annotators?
103
+
104
+ [More Information Needed]
105
+
106
+ ### Personal and Sensitive Information
107
+
108
+ [More Information Needed]
109
+
110
+ ## Considerations for Using the Data
111
+
112
+ ### Social Impact of Dataset
113
+
114
+ [More Information Needed]
115
+
116
+ ### Discussion of Biases
117
+
118
+ [More Information Needed]
119
+
120
+ ### Other Known Limitations
121
+
122
+ [More Information Needed]
123
+
124
+ ## Additional Information
125
+
126
+ ### Dataset Curators
127
+
128
+ [More Information Needed]
129
+
130
+ ### Licensing Information
131
+
132
+ [More Information Needed]
133
+
134
+ ### Citation Information
135
+
136
+ [More Information Needed]
137
+
138
+ ### Contributions
139
+
140
+ Thanks to [@fjcasti1](https://github.com/fjcasti1) for adding this dataset.
beer_reviews_label_drift_neutral.py ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ # Lint as: python3
16
+ """IMDb movie revies dataset mixed with Trip Advisor Hotel Reviews to simulate drift accross time."""
17
+
18
+
19
+ import csv
20
+ import json
21
+ import os
22
+
23
+ import datasets
24
+ from datasets.tasks import TextClassification
25
+
26
+
27
+
28
+ # TODO: Add BibTeX citation to our BLOG
29
+ # Find for instance the citation on arxiv or on the dataset repo/website
30
+ _CITATION = ""
31
+ # _CITATION = """\
32
+ # @InProceedings{huggingface:dataset,
33
+ # title = {A great new dataset},
34
+ # author={huggingface, Inc.
35
+ # },
36
+ # year={2020}
37
+ # }
38
+ # """
39
+
40
+ # TODO: Add description of the dataset here
41
+ # You can copy an official description
42
+ _DESCRIPTION = """\
43
+ This dataset was crafted to be used in our tutorial [Link to the tutorial when
44
+ ready]. It consists on product reviews from an e-commerce store. The reviews
45
+ are labeled on a scale from 1 to 5 (stars). The training & validation sets are
46
+ fully composed by reviews written in english. However, the production set has
47
+ some reviews written in spanish. At Arize, we work to surface this issue and
48
+ help you solve it.
49
+ """
50
+
51
+ # TODO: Add a link to an official homepage for the dataset here
52
+ _HOMEPAGE = ""
53
+
54
+ # TODO: Add the licence for the dataset here if you can find it
55
+ _LICENSE = ""
56
+
57
+ # TODO: Add link to the official dataset URLs here
58
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
59
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
60
+ _URL = "https://huggingface.co/datasets/arize-ai/beer_reviews_label_drift_neutral/resolve/main/"
61
+ _URLS = {
62
+ "training": _URL + "training.csv",
63
+ "validation": _URL + "validation.csv",
64
+ "production": _URL + "production.csv",
65
+ }
66
+
67
+
68
+ # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
69
+ class BeerReviewsLabelDriftNeutral(datasets.GeneratorBasedBuilder):
70
+ """TODO: Short description of my dataset."""
71
+
72
+ VERSION = datasets.Version("1.0.0")
73
+
74
+ # This is an example of a dataset with multiple configurations.
75
+ # If you don't want/need to define several sub-sets in your dataset,
76
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
77
+
78
+ # If you need to make complex sub-parts in the datasets with configurable options
79
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
80
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
81
+
82
+ # You will be able to load one or the other configurations in the following list with
83
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
84
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
85
+ BUILDER_CONFIGS = [
86
+ datasets.BuilderConfig(name="default", version=VERSION, description="Default"),
87
+ ]
88
+
89
+ DEFAULT_CONFIG_NAME = "default" # It's not mandatory to have a default configuration. Just use one if it make sense.
90
+
91
+ def _info(self):
92
+ #class_names = ["negative", "neutral", "positive"]
93
+ class_names = ["negative", "neutral", "positive"]
94
+ # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
95
+ features = datasets.Features(
96
+ # These are the features of your dataset like images, labels ...
97
+ {
98
+ "prediction_ts": datasets.Value("float"),
99
+ "beer_ABV": datasets.Value("float"),
100
+ "beer_name":datasets.Value("string"),
101
+ "beer_style":datasets.Value("string"),
102
+ "review_appearance": datasets.Value("float"),
103
+ "review_palette": datasets.Value("float"),
104
+ "review_taste": datasets.Value("float"),
105
+ "review_aroma": datasets.Value("float"),
106
+ "text":datasets.Value("string"),
107
+ "label":datasets.ClassLabel(names=class_names),
108
+ }
109
+ )
110
+
111
+ return datasets.DatasetInfo(
112
+ # This is the description that will appear on the datasets page.
113
+ description=_DESCRIPTION,
114
+ # This defines the different columns of the dataset and their types
115
+ features=features, # Here we define them above because they are different between the two configurations
116
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
117
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
118
+ supervised_keys=("text", "label"),
119
+ # Homepage of the dataset for documentation
120
+ # License for the dataset if available
121
+ license=_LICENSE,
122
+ # Citation for the dataset
123
+ citation=_CITATION,
124
+ task_templates=[TextClassification(text_column="text", label_column="label")],
125
+ )
126
+
127
+ def _split_generators(self, dl_manager):
128
+ # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
129
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
130
+
131
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
132
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
133
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
134
+ extracted_paths = dl_manager.download_and_extract(_URLS)
135
+ return [
136
+ datasets.SplitGenerator(
137
+ name=datasets.Split("training"),
138
+ # These kwargs will be passed to _generate_examples
139
+ gen_kwargs={
140
+ "filepath": extracted_paths['training'],
141
+ },
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split("validation"),
145
+ # These kwargs will be passed to _generate_examples
146
+ gen_kwargs={
147
+ "filepath": extracted_paths['validation'],
148
+ },
149
+ ),
150
+ datasets.SplitGenerator(
151
+ name=datasets.Split("production"),
152
+ # These kwargs will be passed to _generate_examples
153
+ gen_kwargs={
154
+ "filepath": extracted_paths['production'],
155
+ },
156
+ ),
157
+ ]
158
+
159
+
160
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
161
+ def _generate_examples(self, filepath):
162
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
163
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
164
+ with open(filepath) as csv_file:
165
+ csv_reader = csv.reader(csv_file)
166
+ for id_, row in enumerate(csv_reader):
167
+ prediction_ts,name,style,ABV,appearance,palette,taste,aroma,text,label=row
168
+ if id_==0:
169
+ continue
170
+ yield id_, {
171
+ "prediction_ts":prediction_ts,
172
+ "beer_name": name,
173
+ "beer_style": style,
174
+ "beer_ABV": ABV,
175
+ "review_appearance": appearance,
176
+ "review_palette": palette,
177
+ "review_taste": taste,
178
+ "review_aroma": aroma,
179
+ "text": text,
180
+ "label":label,
181
+ }
production.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba0a962ea574775c7233373db656baa20921e4eebde34d285aa3b08e3c7cfcd1
3
+ size 20539674
training.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d972f3fe36590ce444e05f49bc7ef71d1506448d3966d984ae002bd2f8ff81d5
3
+ size 6650136
validation.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:989c27939cea789957f1fb643cefa2fb726488640a8df3f60d39677ba25a042d
3
+ size 941861