|
import os |
|
from os.path import expanduser |
|
|
|
import shutil |
|
import torch |
|
from soundfile import LibsndfileError |
|
from datasets import load_dataset, DatasetDict, Audio |
|
from tokenizer_encodec import EncodecTokenizer |
|
|
|
|
|
direction = os.getenv("DIRECTION", "enA-jaA") |
|
sides = set(direction.split("-")) |
|
dataset_id = os.getenv("DATASET_ID", 0) |
|
num_proc = int(os.getenv("NUM_PROC", 1)) |
|
hf_org = os.getenv("HF_ORG", "asahi417") |
|
hf_dataset = f"seamless-align-{direction}" |
|
dataset = load_dataset(f"{hf_org}/{hf_dataset}", f"subset_{dataset_id}", split="train") |
|
tokenizer = EncodecTokenizer.from_pretrained() |
|
max_seq_length = 1000000 |
|
min_seq_length = 50000 |
|
audio_loader = Audio() |
|
|
|
|
|
def error_file(example): |
|
for side in sides: |
|
try: |
|
wav = audio_loader.decode_example(example[f"{side}.audio"]) |
|
if len(wav["array"]) < min_seq_length or len(wav["array"]) > max_seq_length: |
|
return False |
|
except ValueError: |
|
return False |
|
except LibsndfileError: |
|
return False |
|
return True |
|
|
|
|
|
print(f"Num examples: {len(dataset)}") |
|
for s in sides: |
|
dataset = dataset.cast_column(f"{s}.audio", Audio(decode=False)) |
|
dataset = dataset.filter(error_file, num_proc=num_proc, desc="drop broken audio") |
|
for s in sides: |
|
dataset = dataset.cast_column(f"{s}.audio", Audio()) |
|
print(f"Num examples (after filtering): {len(dataset)}") |
|
|
|
|
|
def tokenize(example): |
|
for side in sides: |
|
wav = torch.as_tensor(example[f"{side}.audio"]["array"].reshape(1, 1, -1), dtype=torch.float32) |
|
if len(wav) == 0: |
|
return None |
|
example[f"{side}.audio.tokens"] = tokenizer.wav_to_tokens( |
|
wav=wav, sample_rate=example[f"{side}.audio"]["sampling_rate"] |
|
).numpy().tolist()[0] |
|
return example |
|
|
|
|
|
dataset = dataset.map( |
|
function=tokenize, |
|
remove_columns=[f"{s}.audio" for s in sides] + [f"{s}.url" for s in sides] + [f"{s}.duration_start" for s in sides] + [f"{s}.duration_end" for s in sides], |
|
num_proc=num_proc, |
|
desc="tokenize dataset" |
|
) |
|
DatasetDict({"train": dataset}).push_to_hub(f"{hf_org}/{hf_dataset}.tokenized.encodec", config_name=f"subset_{dataset_id}") |
|
cache_dir = f"{expanduser('~')}/.cache/huggingface/datasets/{hf_org}___{hf_dataset}/subset_{dataset_id}" |
|
if os.path.exists(cache_dir): |
|
shutil.rmtree(cache_dir) |
|
|