rvl_cdip_mp / rvl_cdip_mp.py
bdpc's picture
Upload 2 files
ed15331
# Copyright 2023 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""RVL-CDIP_mp (Ryerson Vision Lab Complex Document Information Processing) -Extended -Multipage dataset"""
import os
import datasets
from pathlib import Path
from typing import List
from tqdm import tqdm
datasets.logging.set_verbosity_info()
logger = datasets.logging.get_logger(__name__)
MODE = "binary"
_CITATION = """
@inproceedings{bdpc,
title = {Beyond Document Page Classification},
author = {Anonymous},
booktitle = {Under Review},
year = {2023}
}
"""
_DESCRIPTION = """\
The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset consists of originally retrieved documents in 16 classes.
There were +-500 documents from the original dataset that could not be retrieved based on the metadata or were corrupt in IDL.
"""
_HOMEPAGE = "https://www.cs.cmu.edu/~aharley/rvl-cdip/"
_LICENSE = "https://www.industrydocuments.ucsf.edu/help/copyright/"
SOURCE = "bdpc/rvl_cdip_mp"
_BACKOFF_folder = "/mnt/lerna/data/RVL-CDIP_pdf"
_CLASSES = [
"letter",
"form",
"email",
"handwritten",
"advertisement",
"scientific_report",
"scientific_publication",
"specification",
"file_folder",
"news_article",
"budget",
"invoice",
"presentation",
"questionnaire",
"resume",
"memo",
]
def open_pdf_binary(pdf_file):
with open(pdf_file, "rb") as f:
return f.read()
class RvlCdipMp(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="default",
version=datasets.Version("1.0.0", ""),
description="",
)
]
def __init__(self, *args, examples_per_class=None, **kwargs):
super().__init__(*args, **kwargs)
# examples per class to stop generating
self.examples_per_class = examples_per_class
@property
def manual_download_instructions(self):
return (
"To use RVL-CDIP_multi you have to download it manually. Please extract all files in one folder and load the dataset with: "
"`datasets.load_dataset('bdpc/rvl_cdip_mp', data_dir='path/to/folder/folder_name')`"
)
def _info(self):
# DEFAULT_WRITER_BATCH_SIZE
folder = None
if isinstance(self.config.data_files, str):
folder = self.config.data_files # needs to be extracted cuz zip/tar
else:
if isinstance(self.config.data_dir, str):
folder = self.config.data_dir # contains the folder structure at someone local disk
else:
folder = _BACKOFF_folder # my local path, others should set data_dir or data_files
self.config.data_dir = folder
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"file": datasets.Value("binary"), # datasets.Sequence(datasets.Image()),
"labels": datasets.features.ClassLabel(names=_CLASSES),
}
),
task_templates=None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
if os.path.isdir(self.config.data_dir):
data_files = {
labelset: os.path.join(self.config.data_dir, labelset)
for labelset in sorted(os.listdir(self.config.data_dir), reverse=True)
if not "csv" in labelset
}
elif self.config.data_dir.endswith(".tar.gz"):
archive_path = dl_manager.download(self.config.data_dir)
data_files = dl_manager.iter_archive(archive_path)
raise NotImplementedError()
elif self.config.data_dir.endswith(".zip"):
archive_path = dl_manager.download_and_extract(self.config.data_dir)
data_files = dl_manager.iter_archive(archive_path)
raise NotImplementedError()
splits = []
for split_name, folder in data_files.items():
print(folder)
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"archive_path": folder}))
return splits
def _generate_examples(self, archive_path):
labels = self.info.features["labels"]
extensions = {".pdf", ".PDF"}
for i, path in tqdm(enumerate(Path(archive_path).glob("**/*/*")), desc=f"{archive_path}"):
if path.suffix in extensions:
try:
images = open_pdf_binary(path)
yield path.name, {
"file": images,
"labels": labels.encode_example(path.parent.name.lower()),
}
except Exception as e:
logger.warning(f"{e} failed to parse {i}")