|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features |
|
|
|
_DATASETNAME = "ask_a_patient" |
|
_DISPLAYNAME = "AskAPatient" |
|
|
|
_LANGUAGES = ["English"] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """ |
|
@inproceedings{limsopatham-collier-2016-normalising, |
|
title = "Normalising Medical Concepts in Social Media Texts by Learning Semantic Representation", |
|
author = "Limsopatham, Nut and |
|
Collier, Nigel", |
|
booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", |
|
month = aug, |
|
year = "2016", |
|
address = "Berlin, Germany", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P16-1096", |
|
doi = "10.18653/v1/P16-1096", |
|
pages = "1014--1023", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
The AskAPatient dataset contains medical concepts written on social media \ |
|
mapped to how they are formally written in medical ontologies (SNOMED-CT and AMT). |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/record/55013" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International" |
|
|
|
_URLs = "https://zenodo.org/record/55013/files/datasets.zip" |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class AskAPatient(datasets.GeneratorBasedBuilder): |
|
"""AskAPatient: Dataset for Normalising Medical Concepts in Social Media Text.""" |
|
|
|
DEFAULT_CONFIG_NAME = "ask_a_patient_source" |
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ask_a_patient_source", |
|
version=SOURCE_VERSION, |
|
description="AskAPatient source schema", |
|
schema="source", |
|
subset_id="ask_a_patient", |
|
), |
|
BigBioConfig( |
|
name="ask_a_patient_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="AskAPatient simplified BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="ask_a_patient", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"cui": datasets.Value("string"), |
|
"medical_concept": datasets.Value("string"), |
|
"social_media_text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
dataset_dir = os.path.join(dl_dir, "datasets", "AskAPatient") |
|
|
|
splits_names = ["train", "validation", "test"] |
|
fold_ids = range(10) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=f"{split_name}_{fold_id}", |
|
gen_kwargs={ |
|
"filepath": os.path.join(dataset_dir, f"AskAPatient.fold-{fold_id}.{split_name}.txt"), |
|
"split_id": f"{split_name}_{fold_id}", |
|
}, |
|
) |
|
for split_name in splits_names |
|
for fold_id in fold_ids |
|
] |
|
|
|
def _generate_examples(self, filepath, split_id): |
|
with open(filepath, "r", encoding="latin-1") as f: |
|
for i, line in enumerate(f): |
|
uid = f"{split_id}_{i}" |
|
cui, medical_concept, social_media_text = line.strip().split("\t") |
|
if self.config.schema == "source": |
|
yield uid, { |
|
"cui": cui, |
|
"medical_concept": medical_concept, |
|
"social_media_text": social_media_text, |
|
} |
|
elif self.config.schema == "bigbio_kb": |
|
text_type = "social_media_text" |
|
offset = (0, len(social_media_text)) |
|
yield uid, { |
|
"id": uid, |
|
"document_id": uid, |
|
"passages": [ |
|
{ |
|
"id": f"{uid}_passage", |
|
"type": text_type, |
|
"text": [social_media_text], |
|
"offsets": [offset], |
|
} |
|
], |
|
"entities": [ |
|
{ |
|
"id": f"{uid}_entity", |
|
"type": text_type, |
|
"text": [social_media_text], |
|
"offsets": [offset], |
|
"normalized": [{"db_name": "SNOMED-CT|AMT", "db_id": cui}], |
|
} |
|
], |
|
"events": [], |
|
"coreferences": [], |
|
"relations": [], |
|
} |
|
|