File size: 7,059 Bytes
9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 0590f1a 9554654 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from .bigbiohub import BigBioConfig, Tasks, text_features
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{chen2021overview,
title = {
Overview of the BioCreative VII LitCovid Track: multi-label topic
classification for COVID-19 literature annotation
},
author = {
Chen, Qingyu and Allot, Alexis and Leaman, Robert and Do{\\u{g}}an, Rezarta
Islamaj and Lu, Zhiyong
},
year = 2021,
booktitle = {Proceedings of the seventh BioCreative challenge evaluation workshop}
}
"""
_DATASETNAME = "bc7_litcovid"
_DISPLAYNAME = "BC7-LitCovid"
_DESCRIPTION = """\
The training and development datasets contain the publicly-available \
text of over 30 thousand COVID-19-related articles and their metadata \
(e.g., title, abstract, journal). Articles in both datasets have been \
manually reviewed and articles annotated by in-house models.
"""
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/"
_LICENSE = "UNKNOWN"
_BASE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/BC7-LitCovid-"
_URLS = {
_DATASETNAME: {
"train": _BASE + "Train.csv",
"validation": _BASE + "Dev.csv",
"test": _BASE + "Test-GS.csv",
},
}
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
_CLASS_NAMES = [
"Epidemic Forecasting",
"Treatment",
"Prevention",
"Mechanism",
"Case Report",
"Transmission",
"Diagnosis",
]
logger = datasets.utils.logging.get_logger(__name__)
class BC7LitCovidDataset(datasets.GeneratorBasedBuilder):
"""
Track 5 - LitCovid track Multi-label topic classification for
COVID-19 literature annotation
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="bc7_litcovid_source",
version=SOURCE_VERSION,
description="bc7_litcovid source schema",
schema="source",
subset_id="bc7_litcovid",
),
BigBioConfig(
name="bc7_litcovid_bigbio_text",
version=BIGBIO_VERSION,
description="bc7_litcovid BigBio schema",
schema="bigbio_text",
subset_id="bc7_litcovid",
),
]
DEFAULT_CONFIG_NAME = "bc7_litcovid_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"journal": datasets.Value("string"),
"title": datasets.Value("string"),
"abstract": datasets.Value("string"),
"keywords": datasets.Sequence(datasets.Value("string")),
"pub_type": datasets.Sequence(datasets.Value("string")),
"authors": datasets.Sequence(datasets.Value("string")),
"doi": datasets.Value("string"),
"labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)),
}
)
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# Download all the CSV
urls = _URLS[_DATASETNAME]
path_train = dl_manager.download(urls["train"])
path_validation = dl_manager.download(urls["validation"])
path_test = dl_manager.download(urls["test"])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": path_train,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": path_validation,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": path_test,
"split": "dev",
},
),
]
def _validate_entry(self, e, index) -> bool:
"""
Validates if an entry has all the required fields
"""
fields_to_validate = ["pmid", "abstract", "label"]
for key in fields_to_validate:
if e[key]:
continue
else:
logger.warning(f"Entry {index} missing {key}")
return False
return True
def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
idx = 0
# Load the CSV and convert it to the string format
df = pd.read_csv(filepath, sep=",").astype(str).replace({"nan": None})
for index, e in df.iterrows():
if not self._validate_entry(e, index):
continue
if self.config.schema == "source":
yield idx, {
"pmid": e["pmid"],
"journal": e["journal"],
"title": e["title"],
"abstract": e["abstract"],
"keywords": e["keywords"].split(";") if e["keywords"] is not None else [],
"pub_type": e["pub_type"].split(";") if e["pub_type"] is not None else [],
"authors": e["authors"].split(";") if e["authors"] is not None else [],
"doi": e["doi"],
"labels": e["label"].split(";"),
}
elif self.config.schema == "bigbio_text":
yield idx, {
"id": idx,
"document_id": e["pmid"],
"text": e["abstract"],
"labels": e["label"].split(";"),
}
idx += 1
|