Datasets:

Languages:
English
License:
File size: 7,059 Bytes
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0590f1a
9554654
0590f1a
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0590f1a
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0590f1a
 
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0590f1a
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0590f1a
 
 
 
 
 
 
 
 
 
 
 
 
9554654
 
 
 
 
 
 
 
 
0590f1a
 
9554654
 
 
 
 
 
 
0590f1a
 
 
9554654
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Tuple

import datasets
import pandas as pd

from .bigbiohub import BigBioConfig, Tasks, text_features

_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = False
_CITATION = """\
@inproceedings{chen2021overview,
  title        = {
    Overview of the BioCreative VII LitCovid Track: multi-label topic
    classification for COVID-19 literature annotation
  },
  author       = {
    Chen, Qingyu and Allot, Alexis and Leaman, Robert and Do{\\u{g}}an, Rezarta
    Islamaj and Lu, Zhiyong
  },
  year         = 2021,
  booktitle    = {Proceedings of the seventh BioCreative challenge evaluation workshop}
}

"""

_DATASETNAME = "bc7_litcovid"
_DISPLAYNAME = "BC7-LitCovid"

_DESCRIPTION = """\
The training and development datasets contain the publicly-available \
text of over 30 thousand COVID-19-related articles and their metadata \
(e.g., title, abstract, journal). Articles in both datasets have been \
manually reviewed and articles annotated by in-house models.
"""

_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/"

_LICENSE = "UNKNOWN"

_BASE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/BC7-LitCovid-"

_URLS = {
    _DATASETNAME: {
        "train": _BASE + "Train.csv",
        "validation": _BASE + "Dev.csv",
        "test": _BASE + "Test-GS.csv",
    },
}

_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]

_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"

_CLASS_NAMES = [
    "Epidemic Forecasting",
    "Treatment",
    "Prevention",
    "Mechanism",
    "Case Report",
    "Transmission",
    "Diagnosis",
]

logger = datasets.utils.logging.get_logger(__name__)


class BC7LitCovidDataset(datasets.GeneratorBasedBuilder):
    """
    Track 5 - LitCovid track Multi-label topic classification for
    COVID-19 literature annotation
    """

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)

    BUILDER_CONFIGS = [
        BigBioConfig(
            name="bc7_litcovid_source",
            version=SOURCE_VERSION,
            description="bc7_litcovid source schema",
            schema="source",
            subset_id="bc7_litcovid",
        ),
        BigBioConfig(
            name="bc7_litcovid_bigbio_text",
            version=BIGBIO_VERSION,
            description="bc7_litcovid BigBio schema",
            schema="bigbio_text",
            subset_id="bc7_litcovid",
        ),
    ]

    DEFAULT_CONFIG_NAME = "bc7_litcovid_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":

            features = datasets.Features(
                {
                    "pmid": datasets.Value("string"),
                    "journal": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "abstract": datasets.Value("string"),
                    "keywords": datasets.Sequence(datasets.Value("string")),
                    "pub_type": datasets.Sequence(datasets.Value("string")),
                    "authors": datasets.Sequence(datasets.Value("string")),
                    "doi": datasets.Value("string"),
                    "labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)),
                }
            )

        elif self.config.schema == "bigbio_text":
            features = text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""

        # Download all the CSV
        urls = _URLS[_DATASETNAME]
        path_train = dl_manager.download(urls["train"])
        path_validation = dl_manager.download(urls["validation"])
        path_test = dl_manager.download(urls["test"])

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": path_train,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": path_validation,
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": path_test,
                    "split": "dev",
                },
            ),
        ]

    def _validate_entry(self, e, index) -> bool:
        """
        Validates if an entry has all the required fields
        """
        fields_to_validate = ["pmid", "abstract", "label"]
        for key in fields_to_validate:
            if e[key]:
                continue
            else:
                logger.warning(f"Entry {index} missing {key}")
                return False
        return True

    def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""

        idx = 0

        # Load the CSV and convert it to the string format
        df = pd.read_csv(filepath, sep=",").astype(str).replace({"nan": None})

        for index, e in df.iterrows():
            if not self._validate_entry(e, index):
                continue
            if self.config.schema == "source":

                yield idx, {
                    "pmid": e["pmid"],
                    "journal": e["journal"],
                    "title": e["title"],
                    "abstract": e["abstract"],
                    "keywords": e["keywords"].split(";") if e["keywords"] is not None else [],
                    "pub_type": e["pub_type"].split(";") if e["pub_type"] is not None else [],
                    "authors": e["authors"].split(";") if e["authors"] is not None else [],
                    "doi": e["doi"],
                    "labels": e["label"].split(";"),
                }

            elif self.config.schema == "bigbio_text":

                yield idx, {
                    "id": idx,
                    "document_id": e["pmid"],
                    "text": e["abstract"],
                    "labels": e["label"].split(";"),
                }

            idx += 1