# coding=utf-8 # Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple import datasets import pandas as pd from .bigbiohub import BigBioConfig, Tasks, text_features _LANGUAGES = ["English"] _PUBMED = True _LOCAL = False _CITATION = """\ @inproceedings{chen2021overview, title = { Overview of the BioCreative VII LitCovid Track: multi-label topic classification for COVID-19 literature annotation }, author = { Chen, Qingyu and Allot, Alexis and Leaman, Robert and Do{\\u{g}}an, Rezarta Islamaj and Lu, Zhiyong }, year = 2021, booktitle = {Proceedings of the seventh BioCreative challenge evaluation workshop} } """ _DATASETNAME = "bc7_litcovid" _DISPLAYNAME = "BC7-LitCovid" _DESCRIPTION = """\ The training and development datasets contain the publicly-available \ text of over 30 thousand COVID-19-related articles and their metadata \ (e.g., title, abstract, journal). Articles in both datasets have been \ manually reviewed and articles annotated by in-house models. """ _HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/" _LICENSE = "UNKNOWN" _BASE = "https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/BC7-LitCovid-" _URLS = { _DATASETNAME: { "train": _BASE + "Train.csv", "validation": _BASE + "Dev.csv", "test": _BASE + "Test-GS.csv", }, } _SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION] _SOURCE_VERSION = "1.0.0" _BIGBIO_VERSION = "1.0.0" _CLASS_NAMES = [ "Epidemic Forecasting", "Treatment", "Prevention", "Mechanism", "Case Report", "Transmission", "Diagnosis", ] logger = datasets.utils.logging.get_logger(__name__) class BC7LitCovidDataset(datasets.GeneratorBasedBuilder): """ Track 5 - LitCovid track Multi-label topic classification for COVID-19 literature annotation """ SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) BUILDER_CONFIGS = [ BigBioConfig( name="bc7_litcovid_source", version=SOURCE_VERSION, description="bc7_litcovid source schema", schema="source", subset_id="bc7_litcovid", ), BigBioConfig( name="bc7_litcovid_bigbio_text", version=BIGBIO_VERSION, description="bc7_litcovid BigBio schema", schema="bigbio_text", subset_id="bc7_litcovid", ), ] DEFAULT_CONFIG_NAME = "bc7_litcovid_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "pmid": datasets.Value("string"), "journal": datasets.Value("string"), "title": datasets.Value("string"), "abstract": datasets.Value("string"), "keywords": datasets.Sequence(datasets.Value("string")), "pub_type": datasets.Sequence(datasets.Value("string")), "authors": datasets.Sequence(datasets.Value("string")), "doi": datasets.Value("string"), "labels": datasets.Sequence(datasets.ClassLabel(names=_CLASS_NAMES)), } ) elif self.config.schema == "bigbio_text": features = text_features return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=str(_LICENSE), citation=_CITATION, ) def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: """Returns SplitGenerators.""" # Download all the CSV urls = _URLS[_DATASETNAME] path_train = dl_manager.download(urls["train"]) path_validation = dl_manager.download(urls["validation"]) path_test = dl_manager.download(urls["test"]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": path_train, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": path_validation, "split": "test", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "filepath": path_test, "split": "dev", }, ), ] def _validate_entry(self, e, index) -> bool: """ Validates if an entry has all the required fields """ fields_to_validate = ["pmid", "abstract", "label"] for key in fields_to_validate: if e[key]: continue else: logger.warning(f"Entry {index} missing {key}") return False return True def _generate_examples(self, filepath, split: str) -> Tuple[int, Dict]: """Yields examples as (key, example) tuples.""" idx = 0 # Load the CSV and convert it to the string format df = pd.read_csv(filepath, sep=",").astype(str).replace({"nan": None}) for index, e in df.iterrows(): if not self._validate_entry(e, index): continue if self.config.schema == "source": yield idx, { "pmid": e["pmid"], "journal": e["journal"], "title": e["title"], "abstract": e["abstract"], "keywords": e["keywords"].split(";") if e["keywords"] is not None else [], "pub_type": e["pub_type"].split(";") if e["pub_type"] is not None else [], "authors": e["authors"].split(";") if e["authors"] is not None else [], "doi": e["doi"], "labels": e["label"].split(";"), } elif self.config.schema == "bigbio_text": yield idx, { "id": idx, "document_id": e["pmid"], "text": e["abstract"], "labels": e["label"].split(";"), } idx += 1