File size: 15,791 Bytes
6cc5ae2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
chemicals and proteins and their likely relation to one other. Compounds are
generally agonists (activators) or antagonists (inhibitors) of proteins. The
script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb)
AND/OR source (default) schema
"""
import os
from typing import Dict, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{DBLP:journals/biodb/LiSJSWLDMWL16,
author = {Krallinger, M., Rabal, O., Lourenço, A.},
title = {Overview of the BioCreative VI chemical-protein interaction Track},
journal = {Proceedings of the BioCreative VI Workshop,},
volume = {141-146},
year = {2017},
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/},
doi = {},
biburl = {},
bibsource = {}
}
"""
_DESCRIPTION = """\
The BioCreative VI Chemical-Protein interaction dataset identifies entities of
chemicals and proteins and their likely relation to one other. Compounds are
generally agonists (activators) or antagonists (inhibitors) of proteins.
"""
_DATASETNAME = "chemprot"
_DISPLAYNAME = "ChemProt"
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/"
_LICENSE = 'Public Domain Mark 1.0'
_URLs = {
"source": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip",
"bigbio_kb": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip",
}
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
# Chemprot specific variables
# NOTE: There are 3 examples (2 in dev, 1 in training) with CPR:0
_GROUP_LABELS = {
"CPR:0": "Undefined",
"CPR:1": "Part_of",
"CPR:2": "Regulator",
"CPR:3": "Upregulator",
"CPR:4": "Downregulator",
"CPR:5": "Agonist",
"CPR:6": "Antagonist",
"CPR:7": "Modulator",
"CPR:8": "Cofactor",
"CPR:9": "Substrate",
"CPR:10": "Not",
}
class ChemprotDataset(datasets.GeneratorBasedBuilder):
"""BioCreative VI Chemical-Protein Interaction Task."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="chemprot_full_source",
version=SOURCE_VERSION,
description="chemprot source schema",
schema="source",
subset_id="chemprot_full",
),
BigBioConfig(
name="chemprot_shared_task_eval_source",
version=SOURCE_VERSION,
description="chemprot source schema with only the relation types that were used in the shared task evaluation",
schema="source",
subset_id="chemprot_shared_task_eval",
),
BigBioConfig(
name="chemprot_bigbio_kb",
version=BIGBIO_VERSION,
description="chemprot BigBio schema",
schema="bigbio_kb",
subset_id="chemprot",
),
]
DEFAULT_CONFIG_NAME = "chemprot_full_source"
def _info(self):
if self.config.schema == "source":
features = datasets.Features(
{
"pmid": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": datasets.Sequence(
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Value("string"),
"offsets": datasets.Sequence(datasets.Value("int64")),
}
),
"relations": datasets.Sequence(
{
"type": datasets.Value("string"),
"arg1": datasets.Value("string"),
"arg2": datasets.Value("string"),
}
),
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
my_urls = _URLs[self.config.schema]
data_dir = dl_manager.download_and_extract(my_urls)
# Extract each of the individual folders
# NOTE: omitting "extract" call cause it uses a new folder
train_path = dl_manager.extract(
os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip")
)
test_path = dl_manager.extract(
os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip")
)
dev_path = dl_manager.extract(
os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip")
)
sample_path = dl_manager.extract(
os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip")
)
return [
datasets.SplitGenerator(
name="sample", # should be a named split : /
gen_kwargs={
"filepath": os.path.join(sample_path, "chemprot_sample"),
"abstract_file": "chemprot_sample_abstracts.tsv",
"entity_file": "chemprot_sample_entities.tsv",
"relation_file": "chemprot_sample_relations.tsv",
"gold_standard_file": "chemprot_sample_gold_standard.tsv",
"split": "sample",
},
),
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(train_path, "chemprot_training"),
"abstract_file": "chemprot_training_abstracts.tsv",
"entity_file": "chemprot_training_entities.tsv",
"relation_file": "chemprot_training_relations.tsv",
"gold_standard_file": "chemprot_training_gold_standard.tsv",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(test_path, "chemprot_test_gs"),
"abstract_file": "chemprot_test_abstracts_gs.tsv",
"entity_file": "chemprot_test_entities_gs.tsv",
"relation_file": "chemprot_test_relations_gs.tsv",
"gold_standard_file": "chemprot_test_gold_standard.tsv",
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dev_path, "chemprot_development"),
"abstract_file": "chemprot_development_abstracts.tsv",
"entity_file": "chemprot_development_entities.tsv",
"relation_file": "chemprot_development_relations.tsv",
"gold_standard_file": "chemprot_development_gold_standard.tsv",
"split": "dev",
},
),
]
def _generate_examples(
self,
filepath,
abstract_file,
entity_file,
relation_file,
gold_standard_file,
split,
):
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
entities, entity_id = self._get_entities(
os.path.join(filepath, entity_file)
)
if self.config.subset_id == "chemprot_full":
relations = self._get_relations(os.path.join(filepath, relation_file))
elif self.config.subset_id == "chemprot_shared_task_eval":
relations = self._get_relations_gs(
os.path.join(filepath, gold_standard_file)
)
else:
raise ValueError(self.config)
for id_, pmid in enumerate(abstracts.keys()):
yield id_, {
"pmid": pmid,
"text": abstracts[pmid],
"entities": entities[pmid],
"relations": relations.get(pmid, []),
}
elif self.config.schema == "bigbio_kb":
abstracts = self._get_abstract(os.path.join(filepath, abstract_file))
entities, entity_id = self._get_entities(
os.path.join(filepath, entity_file)
)
relations = self._get_relations(
os.path.join(filepath, relation_file), is_mapped=True
)
uid = 0
for id_, pmid in enumerate(abstracts.keys()):
data = {
"id": str(uid),
"document_id": str(pmid),
"passages": [],
"entities": [],
"relations": [],
"events": [],
"coreferences": [],
}
uid += 1
data["passages"] = [
{
"id": str(uid),
"type": "title and abstract",
"text": [abstracts[pmid]],
"offsets": [[0, len(abstracts[pmid])]],
}
]
uid += 1
entity_to_id = {}
for entity in entities[pmid]:
_text = entity["text"]
entity.update({"text": [_text]})
entity_to_id[entity["id"]] = str(uid)
entity.update({"id": str(uid)})
_offsets = entity["offsets"]
entity.update({"offsets": [_offsets]})
entity["normalized"] = []
data["entities"].append(entity)
uid += 1
for relation in relations.get(pmid, []):
relation["arg1_id"] = entity_to_id[relation.pop("arg1")]
relation["arg2_id"] = entity_to_id[relation.pop("arg2")]
relation.update({"id": str(uid)})
relation["normalized"] = []
data["relations"].append(relation)
uid += 1
yield id_, data
@staticmethod
def _get_abstract(abs_filename: str) -> Dict[str, str]:
"""
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated.
:param filename: `*_abstracts.tsv from ChemProt
:returns Dictionary with PMID keys and abstract text as values.
"""
with open(abs_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
# PMID is the first column, Abstract is last
return {
doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents
} # Includes title as line 1
@staticmethod
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]:
"""
For each document in the corpus, return entity annotations per PMID.
Each column in the entity file is as follows:
(1) PMID
(2) Entity Number
(3) Entity Type (Chemical, Gene-Y, Gene-N)
(4) Start index
(5) End index
(6) Actual text of entity
:param ents_filename: `_*entities.tsv` file from ChemProt
:returns: Dictionary with PMID keys and entity annotations.
"""
with open(ents_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
entities = {}
entity_id = {}
for line in contents:
pmid, idx, label, start_offset, end_offset, name = line.split("\t")
# Populate entity dictionary
if pmid not in entities:
entities[pmid] = []
ann = {
"offsets": [int(start_offset), int(end_offset)],
"text": name,
"type": label,
"id": idx,
}
entities[pmid].append(ann)
# Populate entity mapping
entity_id.update({idx: name})
return entities, entity_id
@staticmethod
def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
"""For each document in the ChemProt corpus, create an annotation for all relationships.
:param is_mapped: Whether to convert into NL the relation tags. Default is OFF
"""
with open(rel_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
relations = {}
for line in contents:
pmid, label, _, _, arg1, arg2 = line.split("\t")
arg1 = arg1.split("Arg1:")[-1]
arg2 = arg2.split("Arg2:")[-1]
if pmid not in relations:
relations[pmid] = []
if is_mapped:
label = _GROUP_LABELS[label]
ann = {
"type": label,
"arg1": arg1,
"arg2": arg2,
}
relations[pmid].append(ann)
return relations
@staticmethod
def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]:
"""
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships.
The columns include:
(1) PMID
(2) Relationship Label (CPR)
(3) Used in shared task
(3) Interactor Argument 1 Entity Identifier
(4) Interactor Argument 2 Entity Identifier
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein.
Unlike entities, there is no counter, hence once must be made
:param rel_filename: Gold standard file name
:param ent_dict: Entity Identifier to text
"""
with open(rel_filename, "r") as f:
contents = [i.strip() for i in f.readlines()]
relations = {}
for line in contents:
pmid, label, arg1, arg2 = line.split("\t")
arg1 = arg1.split("Arg1:")[-1]
arg2 = arg2.split("Arg2:")[-1]
if pmid not in relations:
relations[pmid] = []
if is_mapped:
label = _GROUP_LABELS[label]
ann = {
"type": label,
"arg1": arg1,
"arg2": arg2,
}
relations[pmid].append(ann)
return relations
|