|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The BioCreative VI Chemical-Protein interaction dataset identifies entities of |
|
chemicals and proteins and their likely relation to one other. Compounds are |
|
generally agonists (activators) or antagonists (inhibitors) of proteins. The |
|
script loads dataset in bigbio schema (using knowledgebase schema: schemas/kb) |
|
AND/OR source (default) schema |
|
""" |
|
import os |
|
from typing import Dict, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{DBLP:journals/biodb/LiSJSWLDMWL16, |
|
author = {Krallinger, M., Rabal, O., Lourenço, A.}, |
|
title = {Overview of the BioCreative VI chemical-protein interaction Track}, |
|
journal = {Proceedings of the BioCreative VI Workshop,}, |
|
volume = {141-146}, |
|
year = {2017}, |
|
url = {https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/}, |
|
doi = {}, |
|
biburl = {}, |
|
bibsource = {} |
|
} |
|
""" |
|
_DESCRIPTION = """\ |
|
The BioCreative VI Chemical-Protein interaction dataset identifies entities of |
|
chemicals and proteins and their likely relation to one other. Compounds are |
|
generally agonists (activators) or antagonists (inhibitors) of proteins. |
|
""" |
|
|
|
_DATASETNAME = "chemprot" |
|
_DISPLAYNAME = "ChemProt" |
|
|
|
_HOMEPAGE = "https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/" |
|
|
|
_LICENSE = 'Public Domain Mark 1.0' |
|
|
|
_URLs = { |
|
"source": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip", |
|
"bigbio_kb": "https://biocreative.bioinformatics.udel.edu/media/store/files/2017/ChemProt_Corpus.zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.RELATION_EXTRACTION, Tasks.NAMED_ENTITY_RECOGNITION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
|
|
|
|
_GROUP_LABELS = { |
|
"CPR:0": "Undefined", |
|
"CPR:1": "Part_of", |
|
"CPR:2": "Regulator", |
|
"CPR:3": "Upregulator", |
|
"CPR:4": "Downregulator", |
|
"CPR:5": "Agonist", |
|
"CPR:6": "Antagonist", |
|
"CPR:7": "Modulator", |
|
"CPR:8": "Cofactor", |
|
"CPR:9": "Substrate", |
|
"CPR:10": "Not", |
|
} |
|
|
|
|
|
class ChemprotDataset(datasets.GeneratorBasedBuilder): |
|
"""BioCreative VI Chemical-Protein Interaction Task.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="chemprot_full_source", |
|
version=SOURCE_VERSION, |
|
description="chemprot source schema", |
|
schema="source", |
|
subset_id="chemprot_full", |
|
), |
|
BigBioConfig( |
|
name="chemprot_shared_task_eval_source", |
|
version=SOURCE_VERSION, |
|
description="chemprot source schema with only the relation types that were used in the shared task evaluation", |
|
schema="source", |
|
subset_id="chemprot_shared_task_eval", |
|
), |
|
BigBioConfig( |
|
name="chemprot_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="chemprot BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="chemprot", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "chemprot_full_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"pmid": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": datasets.Sequence( |
|
{ |
|
"id": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"offsets": datasets.Sequence(datasets.Value("int64")), |
|
} |
|
), |
|
"relations": datasets.Sequence( |
|
{ |
|
"type": datasets.Value("string"), |
|
"arg1": datasets.Value("string"), |
|
"arg2": datasets.Value("string"), |
|
} |
|
), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.schema] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
|
|
|
|
|
|
train_path = dl_manager.extract( |
|
os.path.join(data_dir, "ChemProt_Corpus/chemprot_training.zip") |
|
) |
|
test_path = dl_manager.extract( |
|
os.path.join(data_dir, "ChemProt_Corpus/chemprot_test_gs.zip") |
|
) |
|
dev_path = dl_manager.extract( |
|
os.path.join(data_dir, "ChemProt_Corpus/chemprot_development.zip") |
|
) |
|
sample_path = dl_manager.extract( |
|
os.path.join(data_dir, "ChemProt_Corpus/chemprot_sample.zip") |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="sample", |
|
gen_kwargs={ |
|
"filepath": os.path.join(sample_path, "chemprot_sample"), |
|
"abstract_file": "chemprot_sample_abstracts.tsv", |
|
"entity_file": "chemprot_sample_entities.tsv", |
|
"relation_file": "chemprot_sample_relations.tsv", |
|
"gold_standard_file": "chemprot_sample_gold_standard.tsv", |
|
"split": "sample", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(train_path, "chemprot_training"), |
|
"abstract_file": "chemprot_training_abstracts.tsv", |
|
"entity_file": "chemprot_training_entities.tsv", |
|
"relation_file": "chemprot_training_relations.tsv", |
|
"gold_standard_file": "chemprot_training_gold_standard.tsv", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(test_path, "chemprot_test_gs"), |
|
"abstract_file": "chemprot_test_abstracts_gs.tsv", |
|
"entity_file": "chemprot_test_entities_gs.tsv", |
|
"relation_file": "chemprot_test_relations_gs.tsv", |
|
"gold_standard_file": "chemprot_test_gold_standard.tsv", |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dev_path, "chemprot_development"), |
|
"abstract_file": "chemprot_development_abstracts.tsv", |
|
"entity_file": "chemprot_development_entities.tsv", |
|
"relation_file": "chemprot_development_relations.tsv", |
|
"gold_standard_file": "chemprot_development_gold_standard.tsv", |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, |
|
filepath, |
|
abstract_file, |
|
entity_file, |
|
relation_file, |
|
gold_standard_file, |
|
split, |
|
): |
|
"""Yields examples as (key, example) tuples.""" |
|
if self.config.schema == "source": |
|
abstracts = self._get_abstract(os.path.join(filepath, abstract_file)) |
|
|
|
entities, entity_id = self._get_entities( |
|
os.path.join(filepath, entity_file) |
|
) |
|
|
|
if self.config.subset_id == "chemprot_full": |
|
relations = self._get_relations(os.path.join(filepath, relation_file)) |
|
elif self.config.subset_id == "chemprot_shared_task_eval": |
|
relations = self._get_relations_gs( |
|
os.path.join(filepath, gold_standard_file) |
|
) |
|
else: |
|
raise ValueError(self.config) |
|
|
|
for id_, pmid in enumerate(abstracts.keys()): |
|
yield id_, { |
|
"pmid": pmid, |
|
"text": abstracts[pmid], |
|
"entities": entities[pmid], |
|
"relations": relations.get(pmid, []), |
|
} |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
|
|
abstracts = self._get_abstract(os.path.join(filepath, abstract_file)) |
|
entities, entity_id = self._get_entities( |
|
os.path.join(filepath, entity_file) |
|
) |
|
relations = self._get_relations( |
|
os.path.join(filepath, relation_file), is_mapped=True |
|
) |
|
|
|
uid = 0 |
|
for id_, pmid in enumerate(abstracts.keys()): |
|
data = { |
|
"id": str(uid), |
|
"document_id": str(pmid), |
|
"passages": [], |
|
"entities": [], |
|
"relations": [], |
|
"events": [], |
|
"coreferences": [], |
|
} |
|
uid += 1 |
|
|
|
data["passages"] = [ |
|
{ |
|
"id": str(uid), |
|
"type": "title and abstract", |
|
"text": [abstracts[pmid]], |
|
"offsets": [[0, len(abstracts[pmid])]], |
|
} |
|
] |
|
uid += 1 |
|
|
|
entity_to_id = {} |
|
for entity in entities[pmid]: |
|
_text = entity["text"] |
|
entity.update({"text": [_text]}) |
|
entity_to_id[entity["id"]] = str(uid) |
|
entity.update({"id": str(uid)}) |
|
_offsets = entity["offsets"] |
|
entity.update({"offsets": [_offsets]}) |
|
entity["normalized"] = [] |
|
data["entities"].append(entity) |
|
uid += 1 |
|
|
|
for relation in relations.get(pmid, []): |
|
relation["arg1_id"] = entity_to_id[relation.pop("arg1")] |
|
relation["arg2_id"] = entity_to_id[relation.pop("arg2")] |
|
relation.update({"id": str(uid)}) |
|
relation["normalized"] = [] |
|
data["relations"].append(relation) |
|
uid += 1 |
|
|
|
yield id_, data |
|
|
|
@staticmethod |
|
def _get_abstract(abs_filename: str) -> Dict[str, str]: |
|
""" |
|
For each document in PubMed ID (PMID) in the ChemProt abstract data file, return the abstract. Data is tab-separated. |
|
|
|
:param filename: `*_abstracts.tsv from ChemProt |
|
|
|
:returns Dictionary with PMID keys and abstract text as values. |
|
""" |
|
with open(abs_filename, "r") as f: |
|
contents = [i.strip() for i in f.readlines()] |
|
|
|
|
|
return { |
|
doc.split("\t")[0]: "\n".join(doc.split("\t")[1:]) for doc in contents |
|
} |
|
|
|
@staticmethod |
|
def _get_entities(ents_filename: str) -> Tuple[Dict[str, str]]: |
|
""" |
|
For each document in the corpus, return entity annotations per PMID. |
|
Each column in the entity file is as follows: |
|
(1) PMID |
|
(2) Entity Number |
|
(3) Entity Type (Chemical, Gene-Y, Gene-N) |
|
(4) Start index |
|
(5) End index |
|
(6) Actual text of entity |
|
|
|
:param ents_filename: `_*entities.tsv` file from ChemProt |
|
|
|
:returns: Dictionary with PMID keys and entity annotations. |
|
""" |
|
with open(ents_filename, "r") as f: |
|
contents = [i.strip() for i in f.readlines()] |
|
|
|
entities = {} |
|
entity_id = {} |
|
|
|
for line in contents: |
|
|
|
pmid, idx, label, start_offset, end_offset, name = line.split("\t") |
|
|
|
|
|
if pmid not in entities: |
|
entities[pmid] = [] |
|
|
|
ann = { |
|
"offsets": [int(start_offset), int(end_offset)], |
|
"text": name, |
|
"type": label, |
|
"id": idx, |
|
} |
|
|
|
entities[pmid].append(ann) |
|
|
|
|
|
entity_id.update({idx: name}) |
|
|
|
return entities, entity_id |
|
|
|
@staticmethod |
|
def _get_relations(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]: |
|
"""For each document in the ChemProt corpus, create an annotation for all relationships. |
|
|
|
:param is_mapped: Whether to convert into NL the relation tags. Default is OFF |
|
""" |
|
with open(rel_filename, "r") as f: |
|
contents = [i.strip() for i in f.readlines()] |
|
|
|
relations = {} |
|
|
|
for line in contents: |
|
pmid, label, _, _, arg1, arg2 = line.split("\t") |
|
arg1 = arg1.split("Arg1:")[-1] |
|
arg2 = arg2.split("Arg2:")[-1] |
|
|
|
if pmid not in relations: |
|
relations[pmid] = [] |
|
|
|
if is_mapped: |
|
label = _GROUP_LABELS[label] |
|
|
|
ann = { |
|
"type": label, |
|
"arg1": arg1, |
|
"arg2": arg2, |
|
} |
|
|
|
relations[pmid].append(ann) |
|
|
|
return relations |
|
|
|
@staticmethod |
|
def _get_relations_gs(rel_filename: str, is_mapped: bool = False) -> Dict[str, str]: |
|
""" |
|
For each document in the ChemProt corpus, create an annotation for the gold-standard relationships. |
|
|
|
The columns include: |
|
(1) PMID |
|
(2) Relationship Label (CPR) |
|
(3) Used in shared task |
|
(3) Interactor Argument 1 Entity Identifier |
|
(4) Interactor Argument 2 Entity Identifier |
|
|
|
Gold standard includes CPRs 3-9. Relationships are always Gene + Protein. |
|
Unlike entities, there is no counter, hence once must be made |
|
|
|
:param rel_filename: Gold standard file name |
|
:param ent_dict: Entity Identifier to text |
|
""" |
|
with open(rel_filename, "r") as f: |
|
contents = [i.strip() for i in f.readlines()] |
|
|
|
relations = {} |
|
|
|
for line in contents: |
|
pmid, label, arg1, arg2 = line.split("\t") |
|
arg1 = arg1.split("Arg1:")[-1] |
|
arg2 = arg2.split("Arg2:")[-1] |
|
|
|
if pmid not in relations: |
|
relations[pmid] = [] |
|
|
|
if is_mapped: |
|
label = _GROUP_LABELS[label] |
|
|
|
ann = { |
|
"type": label, |
|
"arg1": arg1, |
|
"arg2": arg2, |
|
} |
|
|
|
relations[pmid].append(ann) |
|
|
|
return relations |
|
|