Datasets:

Modalities:
Text
Languages:
English
Size:
< 1K
Libraries:
Datasets
License:
citation_gia_test_collection / citation_gia_test_collection.py
gabrielaltay's picture
upload hubscripts/citation_gia_test_collection_hub.py to hub from bigbio repo
bbbdde0
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List
import datasets
import xml.etree.ElementTree as ET
import uuid
import html
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{Wei2015,
title = {
{GNormPlus}: An Integrative Approach for Tagging Genes, Gene Families,
and Protein Domains
},
author = {Chih-Hsuan Wei and Hung-Yu Kao and Zhiyong Lu},
year = 2015,
journal = {{BioMed} Research International},
publisher = {Hindawi Limited},
volume = 2015,
pages = {1--7},
doi = {10.1155/2015/918710},
url = {https://doi.org/10.1155/2015/918710}
}
"""
_DATASETNAME = "citation_gia_test_collection"
_DISPLAYNAME = "Citation GIA Test Collection"
_DESCRIPTION = """\
The Citation GIA Test Collection was recently created for gene indexing at the
NLM and includes 151 PubMed abstracts with both mention-level and document-level
annotations. They are selected because both have a focus on human genes.
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/"
_LICENSE = 'License information unavailable'
_URLS = {
_DATASETNAME: [
"https://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/tmTools/download/GNormPlus/GNormPlusCorpus.zip"
]
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.NAMED_ENTITY_DISAMBIGUATION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class CitationGIATestCollection(datasets.GeneratorBasedBuilder):
"""
The Citation GIA Test Collection was recently created for gene indexing at the
NLM and includes 151 PubMed abstracts with both mention-level and document-level
annotations. They are selected because both have a focus on human genes.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="citation_gia_test_collection_source",
version=SOURCE_VERSION,
description="citation_gia_test_collection source schema",
schema="source",
subset_id="citation_gia_test_collection",
),
BigBioConfig(
name="citation_gia_test_collection_bigbio_kb",
version=BIGBIO_VERSION,
description="citation_gia_test_collection BigBio schema",
schema="bigbio_kb",
subset_id="citation_gia_test_collection",
),
]
DEFAULT_CONFIG_NAME = "citation_gia_test_collection_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"passages": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
}
],
"entities": [
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"text": datasets.Sequence(datasets.Value("string")),
"offsets": datasets.Sequence([datasets.Value("int32")]),
"normalized": [
{
"db_name": datasets.Value("string"),
"db_id": datasets.Value("string"),
}
],
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(
data_dir[0], "GNormPlusCorpus/NLMIAT.BioC.xml"
),
"split": "NLMIAT",
},
),
]
def _get_entities(self, annot_d: dict) -> dict:
"""'
Converts annotation dict to entity dict.
"""
ent = {
"id": str(uuid.uuid4()),
"type": annot_d["type"],
"text": [annot_d["text"]],
"offsets": [annot_d["offsets"]],
"normalized": [
{
"db_name": "NCBI Gene" if annot_d["type"].isdigit() else "",
"db_id": annot_d["type"] if annot_d["type"].isdigit() else "",
}
],
}
return ent
def _get_offsets_entities(
child, parent_text: str, child_text: str, offset: int
) -> List[int]:
"""
Extracts child text offsets from parent text for entities.
Some offsets that were present in the datset were wrong mainly because of string encodings.
Also a little fraction of parent strings doesn't contain its respective child strings.
Hence few assertion errors in the entitity offsets checking test.
"""
if child_text in parent_text:
index = parent_text.index(child_text)
start = index + offset
else:
start = offset
end = start + len(child_text)
return [start, end]
def _process_annot(self, annot: ET.Element, passages: dict) -> dict:
"""'
Converts annotation XML Element to Python dict.
"""
parent_text = " ".join([p["text"] for p in passages.values()])
annot_d = dict()
a_d = {a.tag: a.text for a in annot}
for a in list(annot):
if a.tag == "location":
offset = int(a.attrib["offset"])
annot_d["offsets"] = self._get_offsets_entities(
html.escape(parent_text[offset:]), html.escape(a_d["text"]), offset
)
elif a.tag != "infon":
annot_d[a.tag] = html.escape(a.text)
else:
annot_d[a.attrib["key"]] = html.escape(a.text)
return annot_d
def _parse_elem(self, elem: ET.Element) -> dict:
"""'
Converts document XML Element to Python dict.
"""
elem_d = dict()
passages = dict()
annotations = elem.findall(".//annotation")
elem_d["entities"] = []
for child in elem:
elem_d[child.tag] = []
for child in elem:
if child.tag == "passage":
elem_d[child.tag].append(
{
c.tag: html.escape(
" ".join(
list(
filter(
lambda item: item,
[t.strip("\n") for t in c.itertext()],
)
)
)
)
for c in child
}
)
elif child.tag == "id":
elem_d[child.tag] = html.escape(child.text)
for passage in elem_d["passage"]:
infon = passage["infon"]
passage.pop("infon", None)
passages[infon] = passage
elem_d["passages"] = passages
elem_d.pop("passage", None)
for a in annotations:
elem_d["entities"].append(self._process_annot(a, elem_d["passages"]))
return elem_d
def _generate_examples(self, filepath, split):
root = ET.parse(filepath).getroot()
if self.config.schema == "source":
uid = 0
for elem in root.findall("document"):
row = self._parse_elem(elem)
uid += 1
passages = row["passages"]
yield uid, {
"id": str(uid),
"passages": [
{
"id": str(uuid.uuid4()),
"type": "title",
"text": [passages["title"]["text"]],
"offsets": [
[
int(passages["title"]["offset"]),
int(passages["title"]["offset"])
+ len(passages["title"]["text"]),
]
],
},
{
"id": str(uuid.uuid4()),
"type": "abstract",
"text": [passages["abstract"]["text"]],
"offsets": [
[
int(passages["abstract"]["offset"]),
int(passages["abstract"]["offset"])
+ len(passages["abstract"]["text"]),
]
],
},
],
"entities": [self._get_entities(a) for a in row["entities"]],
}
elif self.config.schema == "bigbio_kb":
uid = 0
for elem in root.findall("document"):
row = self._parse_elem(elem)
uid += 1
passages = row["passages"]
yield uid, {
"id": str(uid),
"document_id": str(uuid.uuid4()),
"passages": [
{
"id": str(uuid.uuid4()),
"type": "title",
"text": [passages["title"]["text"]],
"offsets": [
[
int(passages["title"]["offset"]),
int(passages["title"]["offset"])
+ len(passages["title"]["text"]),
]
],
},
{
"id": str(uuid.uuid4()),
"type": "abstract",
"text": [passages["abstract"]["text"]],
"offsets": [
[
int(passages["abstract"]["offset"]),
int(passages["abstract"]["offset"])
+ len(passages["abstract"]["text"]),
]
],
},
],
"entities": [self._get_entities(a) for a in row["entities"]],
"relations": [],
"events": [],
"coreferences": [],
}