|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
GraSCCo is a collection of artificially generated semi-structured and unstructured German-language clinical summaries. |
|
These summaries are formulated as letters from the hospital to the patient's GP after in-patient or out-patient care. |
|
This is common practice in Germany, Austria and Switzerland. |
|
|
|
The creation of the GraSCCo documents were inspired by existing clinical texts, |
|
but all names and dates are purely fictional. |
|
There is no relation to existing patients, clinicians or institutions. |
|
Whereas the texts try to represent the range of German clinical language as best as possible, |
|
medical plausibility must not be assumed. |
|
|
|
GraSCCo can therefore only be used to train clinical language models, not clinical domain models. |
|
""" |
|
|
|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import BigBioConfig, Tasks, kb_features, logger |
|
|
|
_LOCAL = False |
|
|
|
_CITATION = """\ |
|
@incollection{modersohn2022grascco, |
|
title={GRASCCO—The First Publicly Shareable, Multiply-Alienated German Clinical Text Corpus}, |
|
author={Modersohn, Luise and Schulz, Stefan and Lohr, Christina and Hahn, Udo}, |
|
booktitle={German Medical Data Sciences 2022--Future Medicine: More Precise, More Integrative, More Sustainable!}, |
|
pages={66--72}, |
|
year={2022}, |
|
publisher={IOS Press} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "grascco" |
|
|
|
_DISPLAYNAME = "GraSCCo" |
|
|
|
_DESCRIPTION = """\ |
|
GraSCCo is a collection of artificially generated semi-structured and unstructured German-language clinical summaries. |
|
These summaries are formulated as letters from the hospital to the patient's GP after in-patient or out-patient care. |
|
This is common practice in Germany, Austria and Switzerland. |
|
|
|
The creation of the GraSCCo documents were inspired by existing clinical texts, |
|
but all names and dates are purely fictional. |
|
There is no relation to existing patients, clinicians or institutions. |
|
Whereas the texts try to represent the range of German clinical language as best as possible, |
|
medical plausibility must not be assumed. |
|
|
|
GraSCCo can therefore only be used to train clinical language models, not clinical domain models. |
|
""" |
|
|
|
_HOMEPAGE = "https://zenodo.org/records/6539131" |
|
|
|
_LICENSE = "CC_BY_4p0" |
|
|
|
_LANGUAGES = ["German"] |
|
|
|
_PUBMED = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"phi": "https://zenodo.org/records/11502329/files/grascco_phi_annotation_json.zip?download=1", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_UIMA_FEATURES_KEY = "%FEATURE_STRUCTURES" |
|
|
|
|
|
class GraSCCoDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataloader for GraSCCo dataset with different annotation layers (PHI, SNOMED CT, etc.)""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="grascco_phi_source", |
|
version=SOURCE_VERSION, |
|
description="GraSCCo (PHI) source schema", |
|
schema="source", |
|
subset_id="phi", |
|
), |
|
BigBioConfig( |
|
name="grascco_phi_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="GraSCCo (PHI) BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="phi", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "grascco_phi_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
_UIMA_FEATURES_KEY: [ |
|
{ |
|
"%ID": datasets.Value("int64"), |
|
"%TYPE": datasets.Value("string"), |
|
"@sofa": datasets.Value("int64"), |
|
"@layer": datasets.Value("int64"), |
|
"begin": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
"name": datasets.Value("string"), |
|
"uiName": datasets.Value("string"), |
|
"documentTitle": datasets.Value("string"), |
|
"sofaString": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[_DATASETNAME][self.config.subset_id] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": Path(data_dir) / "grascco_phi_annotation_json", |
|
}, |
|
), |
|
] |
|
|
|
def _parse_uima_cas_json(self, filename) -> Dict: |
|
"""Parse UIMA CAS JSON file and return parsed elements as well as the raw data""" |
|
with open(filename, "r", encoding="utf-8") as f: |
|
uima_features = json.load(f)[_UIMA_FEATURES_KEY] |
|
phi_elements = [] |
|
for feature in uima_features: |
|
if feature["%TYPE"] == "webanno.custom.PHI": |
|
phi_elements.append(feature) |
|
if feature["%TYPE"] == "de.tudarmstadt.ukp.dkpro.core.api.metadata.type.DocumentMetaData": |
|
document_title = feature["documentTitle"] |
|
if feature["%TYPE"] == "uima.cas.Sofa": |
|
document_text = feature["sofaString"] |
|
return { |
|
"phi_elements": phi_elements, |
|
"document_title": document_title, |
|
"document_text": document_text, |
|
"uima_features": uima_features, |
|
} |
|
|
|
def _generate_examples(self, filepath) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
for file_id, file in enumerate(sorted(filepath.glob("*.json"))): |
|
uima_parsed = self._parse_uima_cas_json(file) |
|
doc_id = uima_parsed["document_title"] |
|
if self.config.schema == "source": |
|
yield doc_id, {"document_id": doc_id, _UIMA_FEATURES_KEY: uima_parsed["uima_features"]} |
|
elif self.config.schema == "bigbio_kb": |
|
text = uima_parsed["document_text"] |
|
relations = [] |
|
entities = [] |
|
|
|
passages = [{"id": f"{file_id}-0", "type": "document", "text": [text], "offsets": [[0, len(text)]]}] |
|
|
|
|
|
if self.config.subset_id == "phi": |
|
for phi in sorted(uima_parsed["phi_elements"], key=lambda p: p["begin"]): |
|
e_start = phi["begin"] |
|
e_end = phi["end"] |
|
eid = phi["%ID"] |
|
if "kind" not in phi: |
|
logger.warning( |
|
f"'kind' attribute missing in PHI element with ID {eid} in document {doc_id}" |
|
) |
|
continue |
|
entities.append( |
|
{ |
|
"id": f"{file_id}-{eid}", |
|
"type": phi["kind"], |
|
"text": [text[e_start:e_end]], |
|
"offsets": [[e_start, e_end]], |
|
"normalized": [], |
|
} |
|
) |
|
|
|
yield doc_id, { |
|
"id": file_id, |
|
"document_id": doc_id, |
|
"passages": passages, |
|
"entities": entities, |
|
"events": [], |
|
"coreferences": [], |
|
"relations": relations, |
|
} |
|
|