File size: 14,842 Bytes
be90a7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A dataset loader for the n2c2 2008 obesity and comorbidities dataset.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
The dataset consists of eight xml files,
* obesity_patient_records_training.xml
* obesity_patient_records_training2.xml
* obesity_standoff_annotations_training.xml
* obesity_standoff_annotations_training_addendum.xml
* obesity_standoff_annotations_training_addendum2.xml
* obesity_standoff_annotations_training_addendum3.xml
* obesity_patient_records_test.xml
* obesity_standoff_annotations_test.xml
containing patient records as well as textual and intuitive annotations.
The files comprising this dataset must be on the users local machine
in a single directory that is passed to `datasets.load_datset` via
the `data_dir` kwarg. This loader script will read the xml files
directly. For example, if the following directory structure exists
on the users local machine,
n2c2_2008
├── obesity_patient_records_training.xml
├── obesity_patient_records_training2.xml
├── obesity_standoff_annotations_training.xml
├── obesity_standoff_annotations_training_addendum.xml
├── obesity_standoff_annotations_training_addendum2.xml
├── obesity_standoff_annotations_training_addendum3.xml
├── obesity_patient_records_test.xml
├── obesity_standoff_annotations_test.xml
Data Access
from https://www.i2b2.org/NLP/DataSets/Main.php
"As always, you must register AND submit a DUA for access. If you previously
accessed the data sets here on i2b2.org, you will need to set a new password
for your account on the Data Portal, but your original DUA will be retained."
"""
import os
import xml.etree.ElementTree as et
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import text_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_DATASETNAME = "n2c2_2008"
_DISPLAYNAME = "n2c2 2008 Obesity"
# https://academic.oup.com/jamia/article/16/4/561/766997
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = True
_CITATION = """\
@article{uzuner2009recognizing,
author = {
Uzuner, Ozlem
},
title = {Recognizing Obesity and Comorbidities in Sparse Data},
journal = {Journal of the American Medical Informatics Association},
volume = {16},
number = {4},
pages = {561-570},
year = {2009},
month = {07},
url = {https://doi.org/10.1197/jamia.M3115},
doi = {10.1197/jamia.M3115},
eprint = {https://academic.oup.com/jamia/article-pdf/16/4/561/2302602/16-4-561.pdf}
}
"""
_DESCRIPTION = """\
The data for the n2c2 2008 obesity challenge consisted of discharge summaries from
the Partners HealthCare Research Patient Data Repository. These data were chosen
from the discharge summaries of patients who were overweight or diabetic and had
been hospitalized for obesity or diabetes sometime since 12/1/04. De-identification
was performed semi-automatically. All private health information was replaced with
synthetic identifiers.
The data for the challenge were annotated by two obesity experts from the
Massachusetts General Hospital Weight Center. The experts were given a textual task,
which asked them to classify each disease (see list of diseases above) as Present,
Absent, Questionable, or Unmentioned based on explicitly documented information in
the discharge summaries, e.g., the statement “the patient is obese”. The experts were
also given an intuitive task, which asked them to classify each disease as Present,
Absent, or Questionable by applying their intuition and judgment to information in
the discharge summaries.
"""
_HOMEPAGE = "https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/"
_LICENSE = 'Data User Agreement'
_SUPPORTED_TASKS = [Tasks.TEXT_CLASSIFICATION]
_CLASS_NAMES = ["present", "absent", "unmentioned", "questionable"]
_disease_names = [
"Obesity",
"Asthma",
"CAD",
"CHF",
"Depression",
"Diabetes",
"Gallstones",
"GERD",
"Gout",
"Hypercholesterolemia",
"Hypertension",
"Hypertriglyceridemia",
"OA",
"OSA",
"PVD",
"Venous Insufficiency",
]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
def _map_labels(doc, task):
"""
Map obesity and comorbidity labels.
:param doc: a document indexde by id
:param task: textual or intuitive annotation task
"""
lmap = {"Y": "present", "N": "absent", "U": "unmentioned", "Q": "questionable"}
def _map_label(doc, task, label_name):
if label_name in doc[task].keys():
return lmap[doc[task][label_name]]
else:
return None
if task in doc.keys():
return {
"Obesity": _map_label(doc, task, "Obesity"),
"Asthma": _map_label(doc, task, "Asthma"),
"CAD": _map_label(doc, task, "CAD"),
"CHF": _map_label(doc, task, "CHF"),
"Depression": _map_label(doc, task, "Depression"),
"Diabetes": _map_label(doc, task, "Diabetes"),
"Gallstones": _map_label(doc, task, "Gallstones"),
"GERD": _map_label(doc, task, "GERD"),
"Gout": _map_label(doc, task, "Gout"),
"Hypercholesterolemia": _map_label(doc, task, "Hypercholesterolemia"),
"Hypertension": _map_label(doc, task, "Hypertension"),
"Hypertriglyceridemia": _map_label(doc, task, "Hypertriglyceridemia"),
"OA": _map_label(doc, task, "OA"),
"OSA": _map_label(doc, task, "OSA"),
"PVD": _map_label(doc, task, "PVD"),
"Venous Insufficiency": _map_label(doc, task, "Venous Insufficiency"),
}
else:
return {task: None}
def _read_xml(partition, data_dir):
"""
Load the data split.
:param partition: train/test
:param data_dir: train and test data directory
"""
documents = {}
all_diseases = set()
notes = tuple()
if partition == "train":
with open(data_dir / "obesity_patient_records_training.xml") as t1, open(
data_dir / "obesity_patient_records_training2.xml"
) as t2:
notes1 = t1.read().strip()
notes2 = t2.read().strip()
notes = (notes1, notes2)
elif partition == "test":
with open(data_dir / "obesity_patient_records_test.xml") as t1:
notes1 = t1.read().strip()
notes = (notes1,)
for file in notes:
root = et.fromstring(file)
root = root.findall("./docs")[0]
for document in root.findall("./doc"):
assert document.attrib["id"] not in documents
documents[document.attrib["id"]] = {}
documents[document.attrib["id"]]["text"] = document.findall("./text")[
0
].text
annotation_files = tuple()
if partition == "train":
with open(data_dir / "obesity_standoff_annotations_training.xml") as t1, open(
data_dir / "obesity_standoff_annotations_training_addendum.xml"
) as t2, open(
data_dir / "obesity_standoff_annotations_training_addendum2.xml"
) as t3, open(
data_dir / "obesity_standoff_annotations_training_addendum3.xml"
) as t4:
train1 = t1.read().strip()
train2 = t2.read().strip()
train3 = t3.read().strip()
train4 = t4.read().strip()
annotation_files = (train1, train2, train3, train4)
elif partition == "test":
with open(data_dir / "obesity_standoff_annotations_test.xml") as t1:
test1 = t1.read().strip()
annotation_files = (test1,)
for file in annotation_files:
root = et.fromstring(file)
for diseases_annotation in root.findall("./diseases"):
annotation_source = diseases_annotation.attrib["source"]
assert isinstance(annotation_source, str)
for disease in diseases_annotation.findall("./disease"):
disease_name = disease.attrib["name"]
all_diseases.add(disease_name)
for annotation in disease.findall("./doc"):
doc_id = annotation.attrib["id"]
if not annotation_source in documents[doc_id]:
documents[doc_id][annotation_source] = {}
assert doc_id in documents
judgment = annotation.attrib["judgment"]
documents[doc_id][annotation_source][disease_name] = judgment
return [
{
"document_id": str(id),
"text": documents[id]["text"],
"textual": _map_labels(documents[id], "textual"),
"intuitive": _map_labels(documents[id], "intuitive"),
}
for id in documents
]
class N2C22008ObesityDataset(datasets.GeneratorBasedBuilder):
"""n2c2 2008 obesity and comorbidities recognition task"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="n2c2_2008_source",
version=SOURCE_VERSION,
description="n2c2_2008 source schema",
schema="source",
subset_id="n2c2_2008",
),
BigBioConfig(
name="n2c2_2008_bigbio_text",
version=BIGBIO_VERSION,
description="n2c2_2008 BigBio schema",
schema="bigbio_text",
subset_id="n2c2_2008",
),
]
DEFAULT_CONFIG_NAME = "n2c2_2008_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"labels": [
{
"annotation": datasets.ClassLabel(
names=["textual", "intuitive"]
),
"disease_name": datasets.ClassLabel(names=_disease_names),
"label": datasets.ClassLabel(names=_CLASS_NAMES),
}
],
}
)
elif self.config.schema == "bigbio_text":
features = text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(
self, dl_manager: datasets.DownloadManager
) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
else:
data_dir = self.config.data_dir
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"split": "test",
},
),
]
@staticmethod
def _get_source_sample(sample):
textual_labels = [
("textual", disease_name, sample["textual"][disease_name])
for disease_name in sample["textual"].keys()
if sample["textual"][disease_name]
]
intuitive_labels = [
("intuitive", disease_name, sample["intuitive"][disease_name])
for disease_name in sample["intuitive"].keys()
if sample["intuitive"][disease_name]
]
return {
"document_id": sample["document_id"],
"text": sample["text"],
"labels": [
{
"annotation": label[0],
"disease_name": label[1],
"label": label[2],
}
for label in textual_labels + intuitive_labels
],
}
@staticmethod
def _get_bigbio_sample(sample_id, sample):
textual_labels = [
("textual", disease_name, sample["textual"][disease_name])
for disease_name in sample["textual"].keys()
if sample["textual"][disease_name]
]
intuitive_labels = [
("intuitive", disease_name, sample["intuitive"][disease_name])
for disease_name in sample["intuitive"].keys()
if sample["intuitive"][disease_name]
]
return {
"id": str(sample_id),
"document_id": sample["document_id"],
"text": sample["text"],
"labels": [
{
"annotation": label[0],
"disease_name": label[1],
"label": label[2],
}
for label in textual_labels + intuitive_labels
],
}
def _generate_examples(self, data_dir, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
data_dir = Path(data_dir).resolve()
if split == "train":
_id = 0
samples = _read_xml(split, data_dir)
for sample in samples:
if self.config.schema == "source":
yield _id, self._get_source_sample(sample)
elif self.config.schema == "bigbio_text":
yield _id, self._get_bigbio_sample(_id, sample)
_id += 1
elif split == "test":
_id = 0
samples = _read_xml(split, data_dir)
for sample in samples:
if self.config.schema == "source":
yield _id, self._get_source_sample(sample)
elif self.config.schema == "bigbio_text":
yield _id, self._get_bigbio_sample(_id, sample)
_id += 1
|