|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
NEJM is a Chinese-English parallel corpus crawled from the New England Journal of Medicine website. |
|
English articles are distributed through https://www.nejm.org/ and Chinese articles are distributed through |
|
http://nejmqianyan.cn/. The corpus contains all article pairs (around 2000 pairs) since 2011. |
|
The script loads dataset in bigbio schema (using schemas/text-to-text) AND/OR source (default) schema |
|
""" |
|
import os |
|
from typing import Dict, Iterable, List |
|
|
|
import datasets |
|
|
|
from .bigbiohub import text2text_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_LANGUAGES = ['English', 'Chinese'] |
|
_PUBMED = False |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{liu2021paramed, |
|
author = {Liu, Boxiang and Huang, Liang}, |
|
title = {ParaMed: a parallel corpus for English–Chinese translation in the biomedical domain}, |
|
journal = {BMC Medical Informatics and Decision Making}, |
|
volume = {21}, |
|
year = {2021}, |
|
url = {https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-021-01621-8}, |
|
doi = {10.1186/s12911-021-01621-8} |
|
} |
|
""" |
|
_DATASETNAME = "paramed" |
|
_DISPLAYNAME = "ParaMed" |
|
|
|
_DESCRIPTION = """\ |
|
NEJM is a Chinese-English parallel corpus crawled from the New England Journal of Medicine website. |
|
English articles are distributed through https://www.nejm.org/ and Chinese articles are distributed through |
|
http://nejmqianyan.cn/. The corpus contains all article pairs (around 2000 pairs) since 2011. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/boxiangliu/ParaMed" |
|
|
|
_LICENSE = 'Creative Commons Attribution 4.0 International' |
|
|
|
_URLs = { |
|
"source": "https://github.com/boxiangliu/ParaMed/blob/master/data/nejm-open-access.tar.gz?raw=true", |
|
"bigbio_t2t": "https://github.com/boxiangliu/ParaMed/blob/master/data/nejm-open-access.tar.gz?raw=true", |
|
} |
|
_SUPPORTED_TASKS = [Tasks.TRANSLATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
_DATA_DIR = "./processed_data/open_access/open_access" |
|
|
|
|
|
class ParamedDataset(datasets.GeneratorBasedBuilder): |
|
"""Write a short docstring documenting what this dataset is""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="paramed_source", |
|
version=SOURCE_VERSION, |
|
description="Paramed source schema", |
|
schema="source", |
|
subset_id="paramed", |
|
), |
|
BigBioConfig( |
|
name="paramed_bigbio_t2t", |
|
version=BIGBIO_VERSION, |
|
description="Paramed BigBio schema", |
|
schema="bigbio_t2t", |
|
subset_id="paramed", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "paramed_source" |
|
|
|
def _info(self): |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text_1": datasets.Value("string"), |
|
"text_2": datasets.Value("string"), |
|
"text_1_name": datasets.Value("string"), |
|
"text_2_name": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
features = text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
|
|
my_urls = _URLs[self.config.schema] |
|
data_dir = os.path.join(dl_manager.download_and_extract(my_urls), _DATA_DIR) |
|
print(data_dir) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"zh_file": os.path.join(data_dir, "nejm.train.zh"), |
|
"en_file": os.path.join(data_dir, "nejm.train.en"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"zh_file": os.path.join(data_dir, "nejm.dev.zh"), |
|
"en_file": os.path.join(data_dir, "nejm.dev.en"), |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"zh_file": os.path.join(data_dir, "nejm.test.zh"), |
|
"en_file": os.path.join(data_dir, "nejm.test.en"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, zh_file, en_file, split): |
|
|
|
logger.info("generating examples from = %s", filepath) |
|
zh_file = open(zh_file, "r") |
|
en_file = open(en_file, "r") |
|
zh_file.seek(0) |
|
en_file.seek(0) |
|
zh_lines = zh_file.readlines() |
|
en_lines = en_file.readlines() |
|
|
|
assert len(en_lines) == len(zh_lines), "Line mismatch" |
|
|
|
if self.config.schema == "source": |
|
for key, (zh_line, en_line) in enumerate(zip(zh_lines, en_lines)): |
|
yield key, { |
|
"document_id": str(key), |
|
"text_1": zh_line, |
|
"text_2": en_line, |
|
"text_1_name": "zh", |
|
"text_2_name": "en", |
|
} |
|
zh_file.close() |
|
en_file.close() |
|
|
|
elif self.config.schema == "bigbio_t2t": |
|
uid = 0 |
|
for key, (zh_line, en_line) in enumerate(zip(zh_lines, en_lines)): |
|
uid += 1 |
|
yield key, { |
|
"id": str(uid), |
|
"document_id": str(key), |
|
"text_1": zh_line, |
|
"text_2": en_line, |
|
"text_1_name": "zh", |
|
"text_2_name": "en", |
|
} |
|
zh_file.close() |
|
en_file.close() |
|
|