import json import itertools from datasets import load_dataset def segment_cells(content): # segment notebooks into lists of individual cells cells = [] cell_types = [] for cell in content['cells']: # select only non-empty cells if len(cell['source']) != 0: cells.append(' '.join(cell['source'])) cell_types.append(cell['cell_type']) return cells, cell_types def parse_notebook(batch): try: cells, types = segment_cells(json.loads(batch['content'])) # get cell types and group them into lists cell_type_groups = [list(g) for k,g in itertools.groupby(types)] cell_types = [k for k,g in itertools.groupby(types)] cell_groups = [] group_start = 0 for g in cell_type_groups: cell_groups.append(cells[group_start:group_start+len(g)]) group_start += len(g) batch['cells'] = cell_groups batch['cell_types'] = cell_types batch['cell_type_groups'] = cell_type_groups except: # if json.loads() returns error, skip and add a placeholder batch['cells'] = [['empty']] batch['cell_types'] = ['empty'] batch['cell_type_groups'] = [['empty']] del batch['content'] return batch if __name__ == "__main__": # load dataset dataset = load_dataset("bigcode/the-stack",data_dir="data/jupyter-notebook", split="train",use_auth_token=True) # segment notebooks dataset = dataset.map(segment) # filter out erronous cells via placeholders dataset = dataset.filter(lambda entry: entry['cell_types']!=['empty']) # push to hub dataset.push_to_hub("bigcode/jupyter-parsed")