Datasets:

Tasks:
Other
Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 19,361 Bytes
c16ac20
a03bea0
 
 
f2cade2
a03bea0
f2cade2
a03bea0
 
 
 
3444e31
a03bea0
 
c4040c7
 
3ad6339
c4040c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ad6339
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5c7703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc216bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b006f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ef290b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd01d74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f23e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4d5f05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cae1088
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47c4e6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3bffe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7f155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4040c7
 
 
 
 
 
 
3ad6339
 
 
 
 
 
e5c7703
 
 
 
 
 
 
 
dc216bb
 
 
 
 
 
b006f86
 
 
 
 
 
9ef290b
 
 
 
 
 
bd01d74
 
 
 
 
 
77f23e7
 
 
 
 
 
 
 
c4d5f05
 
 
 
 
 
cae1088
 
 
 
 
 
47c4e6d
 
 
 
 
 
5c3bffe
 
 
 
 
 
fa7f155
 
 
 
 
 
 
 
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c447515
0d6d527
c16ac20
 
 
98a458f
c16ac20
a03bea0
c16ac20
6ed21a0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3444e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c16ac20
 
a03bea0
c16ac20
 
 
 
 
a03bea0
 
 
3444e31
 
 
 
 
c16ac20
 
 
c76acf3
c16ac20
 
 
 
 
a03bea0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
a03bea0
 
 
 
 
c16ac20
 
a03bea0
c16ac20
 
a03bea0
 
c16ac20
 
 
a03bea0
c16ac20
 
a03bea0
c16ac20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f52f478
 
c16ac20
 
 
 
 
 
 
c447515
6ed21a0
c447515
 
 
 
 
ec51587
c16ac20
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
---
annotations_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- apache-2.0
multilinguality:
- monolingual
size_categories:
- 100M<n<1B
task_categories:
- other
pretty_name: P3
dataset_info:
- config_name: adversarial_qa_dbert_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18313753
    num_examples: 10000
  - name: validation
    num_bytes: 1791034
    num_examples: 1000
  download_size: 6288641
  dataset_size: 20104787
- config_name: adversarial_qa_dbert_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17580553
    num_examples: 10000
  - name: validation
    num_bytes: 1717566
    num_examples: 1000
  download_size: 6206744
  dataset_size: 19298119
- config_name: adversarial_qa_dbert_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18552810
    num_examples: 10000
  - name: validation
    num_bytes: 1824231
    num_examples: 1000
  - name: test
    num_bytes: 1954952
    num_examples: 1000
  download_size: 5882604
  dataset_size: 22331993
- config_name: adversarial_qa_dbert_question_context_answer
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 16859685
    num_examples: 10000
  - name: validation
    num_bytes: 1646118
    num_examples: 1000
  download_size: 6180363
  dataset_size: 18505803
- config_name: adversarial_qa_dbert_tell_what_it_is
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17793277
    num_examples: 10000
  - name: validation
    num_bytes: 1739418
    num_examples: 1000
  download_size: 6276720
  dataset_size: 19532695
- config_name: adversarial_qa_dbidaf_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18273217
    num_examples: 10000
  - name: validation
    num_bytes: 1797789
    num_examples: 1000
  download_size: 6321670
  dataset_size: 20071006
- config_name: adversarial_qa_dbidaf_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17539777
    num_examples: 10000
  - name: validation
    num_bytes: 1724577
    num_examples: 1000
  download_size: 6247591
  dataset_size: 19264354
- config_name: adversarial_qa_dbidaf_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18508967
    num_examples: 10000
  - name: validation
    num_bytes: 1830585
    num_examples: 1000
  - name: test
    num_bytes: 1925723
    num_examples: 1000
  download_size: 5983857
  dataset_size: 22265275
- config_name: adversarial_qa_dbidaf_question_context_answer
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 16821505
    num_examples: 10000
  - name: validation
    num_bytes: 1652425
    num_examples: 1000
  download_size: 6292806
  dataset_size: 18473930
- config_name: adversarial_qa_dbidaf_tell_what_it_is
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17755161
    num_examples: 10000
  - name: validation
    num_bytes: 1745717
    num_examples: 1000
  download_size: 6250903
  dataset_size: 19500878
- config_name: adversarial_qa_droberta_answer_the_following_q
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18084393
    num_examples: 10000
  - name: validation
    num_bytes: 1798375
    num_examples: 1000
  download_size: 6223439
  dataset_size: 19882768
- config_name: adversarial_qa_droberta_based_on
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 17352073
    num_examples: 10000
  - name: validation
    num_bytes: 1725151
    num_examples: 1000
  download_size: 6202901
  dataset_size: 19077224
- config_name: adversarial_qa_droberta_generate_question
  features:
  - name: inputs
    sequence: int32
  - name: inputs_pretokenized
    dtype: string
  - name: targets
    sequence: int32
  - name: targets_pretokenized
    dtype: string
  splits:
  - name: train
    num_bytes: 18257414
    num_examples: 10000
  - name: validation
    num_bytes: 1828966
    num_examples: 1000
  - name: test
    num_bytes: 1997556
    num_examples: 1000
  download_size: 5928633
  dataset_size: 22083936
configs:
- config_name: adversarial_qa_dbert_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_dbert_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_dbert_answer_the_following_q/validation-*
- config_name: adversarial_qa_dbert_based_on
  data_files:
  - split: train
    path: adversarial_qa_dbert_based_on/train-*
  - split: validation
    path: adversarial_qa_dbert_based_on/validation-*
- config_name: adversarial_qa_dbert_generate_question
  data_files:
  - split: train
    path: adversarial_qa_dbert_generate_question/train-*
  - split: validation
    path: adversarial_qa_dbert_generate_question/validation-*
  - split: test
    path: adversarial_qa_dbert_generate_question/test-*
- config_name: adversarial_qa_dbert_question_context_answer
  data_files:
  - split: train
    path: adversarial_qa_dbert_question_context_answer/train-*
  - split: validation
    path: adversarial_qa_dbert_question_context_answer/validation-*
- config_name: adversarial_qa_dbert_tell_what_it_is
  data_files:
  - split: train
    path: adversarial_qa_dbert_tell_what_it_is/train-*
  - split: validation
    path: adversarial_qa_dbert_tell_what_it_is/validation-*
- config_name: adversarial_qa_dbidaf_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_dbidaf_answer_the_following_q/validation-*
- config_name: adversarial_qa_dbidaf_based_on
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_based_on/train-*
  - split: validation
    path: adversarial_qa_dbidaf_based_on/validation-*
- config_name: adversarial_qa_dbidaf_generate_question
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_generate_question/train-*
  - split: validation
    path: adversarial_qa_dbidaf_generate_question/validation-*
  - split: test
    path: adversarial_qa_dbidaf_generate_question/test-*
- config_name: adversarial_qa_dbidaf_question_context_answer
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_question_context_answer/train-*
  - split: validation
    path: adversarial_qa_dbidaf_question_context_answer/validation-*
- config_name: adversarial_qa_dbidaf_tell_what_it_is
  data_files:
  - split: train
    path: adversarial_qa_dbidaf_tell_what_it_is/train-*
  - split: validation
    path: adversarial_qa_dbidaf_tell_what_it_is/validation-*
- config_name: adversarial_qa_droberta_answer_the_following_q
  data_files:
  - split: train
    path: adversarial_qa_droberta_answer_the_following_q/train-*
  - split: validation
    path: adversarial_qa_droberta_answer_the_following_q/validation-*
- config_name: adversarial_qa_droberta_based_on
  data_files:
  - split: train
    path: adversarial_qa_droberta_based_on/train-*
  - split: validation
    path: adversarial_qa_droberta_based_on/validation-*
- config_name: adversarial_qa_droberta_generate_question
  data_files:
  - split: train
    path: adversarial_qa_droberta_generate_question/train-*
  - split: validation
    path: adversarial_qa_droberta_generate_question/validation-*
  - split: test
    path: adversarial_qa_droberta_generate_question/test-*
---

# Dataset Card for P3

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
- [Additional Information](#additional-information)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://bigscience.huggingface.co/promptsource
- **Repository:** https://github.com/bigscience-workshop/promptsource/
- **Paper:** [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207)
- **Point of Contact:** [Victor Sanh](mailto:[email protected])

### Dataset Summary

P3 (Public Pool of Prompts) is a collection of prompted English datasets covering a diverse set of NLP tasks. A prompt is the combination of an input template and a target template. The templates are functions mapping a data example into natural language for the input and target sequences. For example, in the case of an NLI dataset, the data example would include fields for *Premise, Hypothesis, Label*. An input template would be *If {Premise} is true, is it also true that {Hypothesis}?*, whereas a target template can be defined with the label choices *Choices[label]*. Here *Choices* is prompt-specific metadata that consists of the options *yes, maybe, no* corresponding to *label* being entailment (0), neutral (1) or contradiction (2).

Prompts are collected using [Promptsource](https://github.com/bigscience-workshop/promptsource), an interface to interactively write prompts on datasets, and collect prompt-specific metadata such as evaluation metrics. As of October 13th, there are 2'000 prompts collected for 270+ data(sub)sets. The collection of prompts of P3 is publicly available on [Promptsource](https://github.com/bigscience-workshop/promptsource).

To train [T0*](https://huggingface.co/bigscience/T0pp), we used a subset of the prompts available in Promptsource (see details [here](https://huggingface.co/bigscience/T0pp#training-data)). However, some of the prompts use `random.choice`, a method that selects uniformly at random an option in a list of valid possibilities. For reproducibility purposes, we release the collection of prompted examples used to train T0*. **The data available here are the materialized version of the prompted datasets used in [Multitask Prompted Training Enables Zero-Shot Task Generalization](https://arxiv.org/abs/2110.08207) which represent only a subset of the datasets for which there is at least one prompt in Promptsource.**

### Supported Tasks and Leaderboards

The tasks represented in P3 cover a diverse set of NLP tasks including multiple-choice QA, sentiment analysis or natural language inference. We detail the full list of datasets in [Source Data](#source-data).

### Languages

The data in P3 are in English (BCP-47 `en`).

## Dataset Structure

### Data Instances

An example of "train" looks as follows:
```bash
{
  'answer_choices': ['safe', 'trolley'],
  'inputs': [86, 8, 7142, 666, 6, 405, 8, 3, 834, 1518, 21, 1346, 42, 31682, 58, 37, 3, 929, 9, 3042, 63, 2765, 808, 8, 2045, 6448, 326, 13, 8, 31682, 11, 3, 24052, 135, 16, 8, 1346, 552, 8, 3, 834, 47, 6364, 5], 'inputs_pretokenized': 'In the sentence below, does the _ stand for safe or trolley?\nThe treasury workers took the gold bars off of the trolley and stacked them in the safe until the _ was empty.',
  'targets': [31682, 1],
  'targets_pretokenized': '\ntrolley'
}
```

In the case of rank classification (letting the model select its the prediction the option with the highest log-likelihood), an example looks as follows:
```bash
{
  'idx': [5, 0],
  'inputs': [86, 8, 7142, 666, 6, 405, 8, 3, 834, 1518, 21, 19454, 42, 22227, 58, 19454, 744, 31, 17, 2112, 4553, 17742, 7, 12, 1953, 6, 298, 22227, 966, 373, 405, 5, 3, 834, 19, 72, 952, 12, 619, 16, 3, 9, 17742, 3298, 5],
  'inputs_pretokenized': "In the sentence below, does the _ stand for Kyle or Logan?\nKyle doesn't wear leg warmers to bed, while Logan almost always does. _ is more likely to live in a warmer climate.",
  'is_correct': True,
  'targets': [19454, 1],
  'targets_pretokenized': 'Kyle',
  'weight': 1.0
}
```

To check all the prompted examples, you can use the [Promptsource hosted tool](http://bigscience.huggingface.co/promptsource) and choose the `Prompted dataset viewer` mode in the left panel.


### Data Fields

The data fields are the same among all splits:
- `answer_choices`: the choices (in natural language) available to the model
- `inputs_pretokenized`: the natural language input fed to the model
- `targets_pretokenized`: the natural language target that the model has to generate
- `inputs`: the tokenized input with [T5](https://huggingface.co/google/t5-v1_1-base)'s tokenizer
- `targets`: the tokenized target with [T5](https://huggingface.co/google/t5-v1_1-base)'s tokenizer
- `idx`: identifier of the (example, answer_option_id) in the case of rank classification
- `weight`: a weight for the example produced by seqio (always set to 1.0 in practise)
- `is_correct`: whether the (example, answer_option_id) is the correct one

### Data Splits

The list of data splits and their respective sizes is very long. You'll find the whole list in this [file](https://huggingface.co/datasets/bigscience/P3/blob/main/tasks_splits_and_features.py).

## Dataset Creation

### Curation Rationale

The Public Pool of Prompts relies on the Hugging Face Dataset library. Any public dataset in the Datasets library can be prompted. We select the datasets that have at least one subset in English and excluded datasets containing (predominantly) non-natural language examples.

We conservatively decided not to prompt datasets that contain potentially harmful content (for instance, datasets built on social media content). However, we sometimes prompt datasets that are purposefully built to measure bias and fairness of trained models, and reserve these prompted datasets (the validation or test sets) for evaluation purposes.

### Source Data

Here's the full list of the datasets present in the materialized version of P3:
- Multiple-Choice QA
  - CommonsenseQA
  - DREAM
  - QUAIL
  - QuaRTz
  - Social IQA
  - WiQA
  - Cosmos
  - QASC
  - Quarel
  - SciQ
  - Wiki Hop
  - ARC
  - OpenBookQA
  - MultiRC
  - PIQA
  - RACE
  - HellaSwag
  - BoolQ
- Extractive QA
  - Adversarial QA
  - Quoref
  - DuoRC
  - ROPES
  - SQuAD v2
  - ReCoRD
- Close-book QA
  - Hotpot QA
  - Wiki QA
  - Trivia QA
  - Web Questions
- Structure-to-text
  - Common Gen
  - Wiki Bio
- Sentiment
  - Amazon
  - App Reviews
  - IMDB
  - Rotten Tomatoes
  - Yelp
- Summarization
  - CNN Daily Mail
  - Gigaword
  - MultiNews
  - SamSum
  - XSum
- Topic Classification
  - AG News
  - DBPedia
  - TREC
- Paraphrase Identification
  - MRPC
  - PAWS
  - QQP
- Natural Language Inference
  - ANLI
  - CB
  - RTE
- Coreference Resolution
  - WSC
  - Winogrande
- Word Sense disambiguation
  - WiC
- Sentence Completion
  - COPA
  - HellaSwag
  - Story Cloze

### Annotations

The prompts available in Promptsource are collected as part of BigScience, one-year long research workshop on large multilingual models and datasets. 36 contributors affiliated with 24 institutions in 8 countries participated to the prompt collection. Contributors are in majority machine learning researchers or machine learning engineers.

The main annotation guideline was that prompts needed to be grammatical and understandable by a native English speaker with no prior experience of the tasks. Additionally, prompts that required explicit counting or numerical indexing were removed in favor of natural language variants, e.g., instead of predicting indices of a span to extract (e.g. in extractive question answering), the model was expected to copy the span's text instead. With these minimal constraints, prompt writers were encouraged to use both formal and creative prompts and various orderings of the data. Most of the prompts correspond directly to a version of the original proposed task, although we also allowed prompts that permuted the original task (for instance, generating a document from its summary) or allowed for ambiguous output (for instance, not indicating a list of available choices).

The full annotation given to the contributors can be found [here](https://github.com/bigscience-workshop/promptsource/blob/main/CONTRIBUTING.md). *Note to self: the link is currently being updated with the)

## Additional Information

### Licensing Information

The dataset is released under Apache 2.0.

### Citation Information

```bibtex
@misc{sanh2021multitask,
      title={Multitask Prompted Training Enables Zero-Shot Task Generalization},
      author={Victor Sanh and Albert Webson and Colin Raffel and Stephen H. Bach and Lintang Sutawika and Zaid Alyafeai and Antoine Chaffin and Arnaud Stiegler and Teven Le Scao and Arun Raja and Manan Dey and M Saiful Bari and Canwen Xu and Urmish Thakker and Shanya Sharma Sharma and Eliza Szczechla and Taewoon Kim and Gunjan Chhablani and Nihal Nayak and Debajyoti Datta and Jonathan Chang and Mike Tian-Jian Jiang and Han Wang and Matteo Manica and Sheng Shen and Zheng Xin Yong and Harshit Pandey and Rachel Bawden and Thomas Wang and Trishala Neeraj and Jos Rozen and Abheesht Sharma and Andrea Santilli and Thibault Fevry and Jason Alan Fries and Ryan Teehan and Stella Biderman and Leo Gao and Tali Bers and Thomas Wolf and Alexander M. Rush},
      year={2021},
      eprint={2110.08207},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```

### Contributions

Thanks to the contributors of [promptsource](https://github.com/bigscience-workshop/promptsource/graphs/contributors) for adding this dataset.