birgermoell commited on
Commit
7258d24
1 Parent(s): 8bde354

Create train_custom_model.py

Browse files
Files changed (1) hide show
  1. train_custom_model.py +1143 -0
train_custom_model.py ADDED
@@ -0,0 +1,1143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ import argparse
17
+ import logging
18
+ import math
19
+ import os
20
+ import random
21
+ import time
22
+ from pathlib import Path
23
+
24
+ import jax
25
+ import jax.numpy as jnp
26
+ import numpy as np
27
+ import optax
28
+ import torch
29
+ import torch.utils.checkpoint
30
+ import transformers
31
+ from datasets import load_dataset, load_from_disk
32
+ from flax import jax_utils
33
+ from flax.core.frozen_dict import unfreeze
34
+ from flax.training import train_state
35
+ from flax.training.common_utils import shard
36
+ from huggingface_hub import create_repo, upload_folder
37
+ from PIL import Image, PngImagePlugin
38
+ from torch.utils.data import IterableDataset
39
+ from torchvision import transforms
40
+ from tqdm.auto import tqdm
41
+ from transformers import CLIPTokenizer, FlaxCLIPTextModel, set_seed
42
+
43
+ from diffusers import (
44
+ FlaxAutoencoderKL,
45
+ FlaxControlNetModel,
46
+ FlaxDDPMScheduler,
47
+ FlaxStableDiffusionControlNetPipeline,
48
+ FlaxUNet2DConditionModel,
49
+ )
50
+ from diffusers.utils import check_min_version, is_wandb_available
51
+
52
+
53
+ # To prevent an error that occurs when there are abnormally large compressed data chunk in the png image
54
+ # see more https://github.com/python-pillow/Pillow/issues/5610
55
+ LARGE_ENOUGH_NUMBER = 100
56
+ PngImagePlugin.MAX_TEXT_CHUNK = LARGE_ENOUGH_NUMBER * (1024**2)
57
+
58
+ if is_wandb_available():
59
+ import wandb
60
+
61
+ # Will error if the minimal version of diffusers is not installed. Remove at your own risks.
62
+ check_min_version("0.16.0.dev0")
63
+
64
+ logger = logging.getLogger(__name__)
65
+
66
+
67
+ def image_grid(imgs, rows, cols):
68
+ assert len(imgs) == rows * cols
69
+
70
+ w, h = imgs[0].size
71
+ grid = Image.new("RGB", size=(cols * w, rows * h))
72
+ grid_w, grid_h = grid.size
73
+
74
+ for i, img in enumerate(imgs):
75
+ grid.paste(img, box=(i % cols * w, i // cols * h))
76
+ return grid
77
+
78
+
79
+ def log_validation(controlnet, controlnet_params, tokenizer, args, rng, weight_dtype):
80
+ logger.info("Running validation... ")
81
+
82
+ pipeline, params = FlaxStableDiffusionControlNetPipeline.from_pretrained(
83
+ args.pretrained_model_name_or_path,
84
+ tokenizer=tokenizer,
85
+ controlnet=controlnet,
86
+ safety_checker=None,
87
+ dtype=weight_dtype,
88
+ revision=args.revision,
89
+ from_pt=args.from_pt,
90
+ )
91
+ params = jax_utils.replicate(params)
92
+ params["controlnet"] = controlnet_params
93
+
94
+ num_samples = jax.device_count()
95
+ prng_seed = jax.random.split(rng, jax.device_count())
96
+
97
+ if len(args.validation_image) == len(args.validation_prompt):
98
+ validation_images = args.validation_image
99
+ validation_prompts = args.validation_prompt
100
+ elif len(args.validation_image) == 1:
101
+ validation_images = args.validation_image * len(args.validation_prompt)
102
+ validation_prompts = args.validation_prompt
103
+ elif len(args.validation_prompt) == 1:
104
+ validation_images = args.validation_image
105
+ validation_prompts = args.validation_prompt * len(args.validation_image)
106
+ else:
107
+ raise ValueError(
108
+ "number of `args.validation_image` and `args.validation_prompt` should be checked in `parse_args`"
109
+ )
110
+
111
+ image_logs = []
112
+
113
+ for validation_prompt, validation_image in zip(validation_prompts, validation_images):
114
+ prompts = num_samples * [validation_prompt]
115
+ prompt_ids = pipeline.prepare_text_inputs(prompts)
116
+ prompt_ids = shard(prompt_ids)
117
+
118
+ validation_image = Image.open(validation_image).convert("RGB")
119
+ processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
120
+ processed_image = shard(processed_image)
121
+ images = pipeline(
122
+ prompt_ids=prompt_ids,
123
+ image=processed_image,
124
+ params=params,
125
+ prng_seed=prng_seed,
126
+ num_inference_steps=50,
127
+ jit=True,
128
+ ).images
129
+
130
+ images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
131
+ images = pipeline.numpy_to_pil(images)
132
+
133
+ image_logs.append(
134
+ {"validation_image": validation_image, "images": images, "validation_prompt": validation_prompt}
135
+ )
136
+
137
+ if args.report_to == "wandb":
138
+ formatted_images = []
139
+ for log in image_logs:
140
+ images = log["images"]
141
+ validation_prompt = log["validation_prompt"]
142
+ validation_image = log["validation_image"]
143
+
144
+ formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
145
+ for image in images:
146
+ image = wandb.Image(image, caption=validation_prompt)
147
+ formatted_images.append(image)
148
+
149
+ wandb.log({"validation": formatted_images})
150
+ else:
151
+ logger.warn(f"image logging not implemented for {args.report_to}")
152
+
153
+ return image_logs
154
+
155
+
156
+ def save_model_card(repo_id: str, image_logs=None, base_model=str, repo_folder=None):
157
+ img_str = ""
158
+ if image_logs is not None:
159
+ for i, log in enumerate(image_logs):
160
+ images = log["images"]
161
+ validation_prompt = log["validation_prompt"]
162
+ validation_image = log["validation_image"]
163
+ validation_image.save(os.path.join(repo_folder, "image_control.png"))
164
+ img_str += f"prompt: {validation_prompt}\n"
165
+ images = [validation_image] + images
166
+ image_grid(images, 1, len(images)).save(os.path.join(repo_folder, f"images_{i}.png"))
167
+ img_str += f"![images_{i})](./images_{i}.png)\n"
168
+
169
+ yaml = f"""
170
+ ---
171
+ license: creativeml-openrail-m
172
+ base_model: {base_model}
173
+ tags:
174
+ - stable-diffusion
175
+ - stable-diffusion-diffusers
176
+ - text-to-image
177
+ - diffusers
178
+ - controlnet
179
+ - jax-diffusers-event
180
+ inference: true
181
+ ---
182
+ """
183
+ model_card = f"""
184
+ # controlnet- {repo_id}
185
+
186
+ These are controlnet weights trained on {base_model} with new type of conditioning. You can find some example images in the following. \n
187
+ {img_str}
188
+ """
189
+ with open(os.path.join(repo_folder, "README.md"), "w") as f:
190
+ f.write(yaml + model_card)
191
+
192
+
193
+ def parse_args():
194
+ parser = argparse.ArgumentParser(description="Simple example of a training script.")
195
+ parser.add_argument(
196
+ "--pretrained_model_name_or_path",
197
+ type=str,
198
+ required=True,
199
+ help="Path to pretrained model or model identifier from huggingface.co/models.",
200
+ )
201
+ parser.add_argument(
202
+ "--controlnet_model_name_or_path",
203
+ type=str,
204
+ default=None,
205
+ help="Path to pretrained controlnet model or model identifier from huggingface.co/models."
206
+ " If not specified controlnet weights are initialized from unet.",
207
+ )
208
+ parser.add_argument(
209
+ "--revision",
210
+ type=str,
211
+ default=None,
212
+ help="Revision of pretrained model identifier from huggingface.co/models.",
213
+ )
214
+ parser.add_argument(
215
+ "--from_pt",
216
+ action="store_true",
217
+ help="Load the pretrained model from a PyTorch checkpoint.",
218
+ )
219
+ parser.add_argument(
220
+ "--controlnet_revision",
221
+ type=str,
222
+ default=None,
223
+ help="Revision of controlnet model identifier from huggingface.co/models.",
224
+ )
225
+ parser.add_argument(
226
+ "--profile_steps",
227
+ type=int,
228
+ default=0,
229
+ help="How many training steps to profile in the beginning.",
230
+ )
231
+ parser.add_argument(
232
+ "--profile_validation",
233
+ action="store_true",
234
+ help="Whether to profile the (last) validation.",
235
+ )
236
+ parser.add_argument(
237
+ "--profile_memory",
238
+ action="store_true",
239
+ help="Whether to dump an initial (before training loop) and a final (at program end) memory profile.",
240
+ )
241
+ parser.add_argument(
242
+ "--ccache",
243
+ type=str,
244
+ default=None,
245
+ help="Enables compilation cache.",
246
+ )
247
+ parser.add_argument(
248
+ "--controlnet_from_pt",
249
+ action="store_true",
250
+ help="Load the controlnet model from a PyTorch checkpoint.",
251
+ )
252
+ parser.add_argument(
253
+ "--tokenizer_name",
254
+ type=str,
255
+ default=None,
256
+ help="Pretrained tokenizer name or path if not the same as model_name",
257
+ )
258
+ parser.add_argument(
259
+ "--output_dir",
260
+ type=str,
261
+ default="runs/{timestamp}",
262
+ help="The output directory where the model predictions and checkpoints will be written. "
263
+ "Can contain placeholders: {timestamp}.",
264
+ )
265
+ parser.add_argument(
266
+ "--cache_dir",
267
+ type=str,
268
+ default=None,
269
+ help="The directory where the downloaded models and datasets will be stored.",
270
+ )
271
+ parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
272
+ parser.add_argument(
273
+ "--resolution",
274
+ type=int,
275
+ default=512,
276
+ help=(
277
+ "The resolution for input images, all the images in the train/validation dataset will be resized to this"
278
+ " resolution"
279
+ ),
280
+ )
281
+ parser.add_argument(
282
+ "--train_batch_size", type=int, default=1, help="Batch size (per device) for the training dataloader."
283
+ )
284
+ parser.add_argument("--num_train_epochs", type=int, default=100)
285
+ parser.add_argument(
286
+ "--max_train_steps",
287
+ type=int,
288
+ default=None,
289
+ help="Total number of training steps to perform.",
290
+ )
291
+ parser.add_argument(
292
+ "--checkpointing_steps",
293
+ type=int,
294
+ default=5000,
295
+ help=("Save a checkpoint of the training state every X updates."),
296
+ )
297
+ parser.add_argument(
298
+ "--learning_rate",
299
+ type=float,
300
+ default=1e-4,
301
+ help="Initial learning rate (after the potential warmup period) to use.",
302
+ )
303
+ parser.add_argument(
304
+ "--scale_lr",
305
+ action="store_true",
306
+ help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
307
+ )
308
+ parser.add_argument(
309
+ "--lr_scheduler",
310
+ type=str,
311
+ default="constant",
312
+ help=(
313
+ 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
314
+ ' "constant", "constant_with_warmup"]'
315
+ ),
316
+ )
317
+ parser.add_argument(
318
+ "--snr_gamma",
319
+ type=float,
320
+ default=None,
321
+ help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
322
+ "More details here: https://arxiv.org/abs/2303.09556.",
323
+ )
324
+ parser.add_argument(
325
+ "--dataloader_num_workers",
326
+ type=int,
327
+ default=0,
328
+ help=(
329
+ "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
330
+ ),
331
+ )
332
+ parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
333
+ parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
334
+ parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
335
+ parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
336
+ parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
337
+ parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
338
+ parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
339
+ parser.add_argument(
340
+ "--hub_model_id",
341
+ type=str,
342
+ default=None,
343
+ help="The name of the repository to keep in sync with the local `output_dir`.",
344
+ )
345
+ parser.add_argument(
346
+ "--logging_steps",
347
+ type=int,
348
+ default=100,
349
+ help=("log training metric every X steps to `--report_t`"),
350
+ )
351
+ parser.add_argument(
352
+ "--report_to",
353
+ type=str,
354
+ default="wandb",
355
+ help=('The integration to report the results and logs to. Currently only supported platforms are `"wandb"`'),
356
+ )
357
+ parser.add_argument(
358
+ "--mixed_precision",
359
+ type=str,
360
+ default="no",
361
+ choices=["no", "fp16", "bf16"],
362
+ help=(
363
+ "Whether to use mixed precision. Choose"
364
+ "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
365
+ "and an Nvidia Ampere GPU."
366
+ ),
367
+ )
368
+ parser.add_argument(
369
+ "--dataset_name",
370
+ type=str,
371
+ default=None,
372
+ help=(
373
+ "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
374
+ " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
375
+ " or to a folder containing files that 🤗 Datasets can understand."
376
+ ),
377
+ )
378
+ parser.add_argument("--streaming", action="store_true", help="To stream a large dataset from Hub.")
379
+ parser.add_argument(
380
+ "--dataset_config_name",
381
+ type=str,
382
+ default=None,
383
+ help="The config of the Dataset, leave as None if there's only one config.",
384
+ )
385
+ parser.add_argument(
386
+ "--train_data_dir",
387
+ type=str,
388
+ default=None,
389
+ help=(
390
+ "A folder containing the training dataset. By default it will use `load_dataset` method to load a custom dataset from the folder."
391
+ "Folder must contain a dataset script as described here https://huggingface.co/docs/datasets/dataset_script) ."
392
+ "If `--load_from_disk` flag is passed, it will use `load_from_disk` method instead. Ignored if `dataset_name` is specified."
393
+ ),
394
+ )
395
+ parser.add_argument(
396
+ "--load_from_disk",
397
+ action="store_true",
398
+ help=(
399
+ "If True, will load a dataset that was previously saved using `save_to_disk` from `--train_data_dir`"
400
+ "See more https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.load_from_disk"
401
+ ),
402
+ )
403
+ parser.add_argument(
404
+ "--image_column", type=str, default="image", help="The column of the dataset containing the target image."
405
+ )
406
+ parser.add_argument(
407
+ "--conditioning_image_column",
408
+ type=str,
409
+ default="conditioning_image",
410
+ help="The column of the dataset containing the controlnet conditioning image.",
411
+ )
412
+ parser.add_argument(
413
+ "--caption_column",
414
+ type=str,
415
+ default="text",
416
+ help="The column of the dataset containing a caption or a list of captions.",
417
+ )
418
+ parser.add_argument(
419
+ "--max_train_samples",
420
+ type=int,
421
+ default=None,
422
+ help=(
423
+ "For debugging purposes or quicker training, truncate the number of training examples to this "
424
+ "value if set. Needed if `streaming` is set to True."
425
+ ),
426
+ )
427
+ parser.add_argument(
428
+ "--proportion_empty_prompts",
429
+ type=float,
430
+ default=0,
431
+ help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
432
+ )
433
+ parser.add_argument(
434
+ "--validation_prompt",
435
+ type=str,
436
+ default=None,
437
+ nargs="+",
438
+ help=(
439
+ "A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
440
+ " Provide either a matching number of `--validation_image`s, a single `--validation_image`"
441
+ " to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
442
+ ),
443
+ )
444
+ parser.add_argument(
445
+ "--validation_image",
446
+ type=str,
447
+ default=None,
448
+ nargs="+",
449
+ help=(
450
+ "A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
451
+ " and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
452
+ " a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
453
+ " `--validation_image` that will be used with all `--validation_prompt`s."
454
+ ),
455
+ )
456
+ parser.add_argument(
457
+ "--validation_steps",
458
+ type=int,
459
+ default=100,
460
+ help=(
461
+ "Run validation every X steps. Validation consists of running the prompt"
462
+ " `args.validation_prompt` and logging the images."
463
+ ),
464
+ )
465
+ parser.add_argument("--wandb_entity", type=str, default=None, help=("The wandb entity to use (for teams)."))
466
+ parser.add_argument(
467
+ "--tracker_project_name",
468
+ type=str,
469
+ default="train_controlnet_flax",
470
+ help=("The `project` argument passed to wandb"),
471
+ )
472
+ parser.add_argument(
473
+ "--gradient_accumulation_steps", type=int, default=1, help="Number of steps to accumulate gradients over"
474
+ )
475
+ parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
476
+
477
+ args = parser.parse_args()
478
+ args.output_dir = args.output_dir.replace("{timestamp}", time.strftime("%Y%m%d_%H%M%S"))
479
+
480
+ env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
481
+ if env_local_rank != -1 and env_local_rank != args.local_rank:
482
+ args.local_rank = env_local_rank
483
+
484
+ # Sanity checks
485
+ if args.dataset_name is None and args.train_data_dir is None:
486
+ raise ValueError("Need either a dataset name or a training folder.")
487
+ if args.dataset_name is not None and args.train_data_dir is not None:
488
+ raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
489
+
490
+ if args.proportion_empty_prompts < 0 or args.proportion_empty_prompts > 1:
491
+ raise ValueError("`--proportion_empty_prompts` must be in the range [0, 1].")
492
+
493
+ if args.validation_prompt is not None and args.validation_image is None:
494
+ raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
495
+
496
+ if args.validation_prompt is None and args.validation_image is not None:
497
+ raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
498
+
499
+ if (
500
+ args.validation_image is not None
501
+ and args.validation_prompt is not None
502
+ and len(args.validation_image) != 1
503
+ and len(args.validation_prompt) != 1
504
+ and len(args.validation_image) != len(args.validation_prompt)
505
+ ):
506
+ raise ValueError(
507
+ "Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
508
+ " or the same number of `--validation_prompt`s and `--validation_image`s"
509
+ )
510
+
511
+ # This idea comes from
512
+ # https://github.com/borisdayma/dalle-mini/blob/d2be512d4a6a9cda2d63ba04afc33038f98f705f/src/dalle_mini/data.py#L370
513
+ if args.streaming and args.max_train_samples is None:
514
+ raise ValueError("You must specify `max_train_samples` when using dataset streaming.")
515
+
516
+ return args
517
+
518
+
519
+ def make_train_dataset(args, tokenizer, batch_size=None):
520
+ # Get the datasets: you can either provide your own training and evaluation files (see below)
521
+ # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
522
+
523
+ # In distributed training, the load_dataset function guarantees that only one local process can concurrently
524
+ # download the dataset.
525
+ if args.dataset_name is not None:
526
+ # Downloading and loading a dataset from the hub.
527
+ # dataset = load_dataset(
528
+ # args.dataset_name,
529
+ # args.dataset_config_name,
530
+ # cache_dir=args.cache_dir,
531
+ # streaming=args.streaming,
532
+ # )
533
+
534
+ dataset = load_dataset("/home/birgermoell/data")
535
+
536
+ else:
537
+ if args.train_data_dir is not None:
538
+ if args.load_from_disk:
539
+ dataset = load_from_disk(
540
+ args.train_data_dir,
541
+ )
542
+ else:
543
+ dataset = load_dataset(
544
+ args.train_data_dir,
545
+ cache_dir=args.cache_dir,
546
+ )
547
+ # See more about loading custom images at
548
+ # https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
549
+
550
+ # Preprocessing the datasets.
551
+ # We need to tokenize inputs and targets.
552
+ if isinstance(dataset["train"], IterableDataset):
553
+ column_names = next(iter(dataset["train"])).keys()
554
+ else:
555
+ column_names = dataset["train"].column_names
556
+
557
+ # 6. Get the column names for input/target.
558
+ if args.image_column is None:
559
+ image_column = column_names[0]
560
+ logger.info(f"image column defaulting to {image_column}")
561
+ else:
562
+ image_column = args.image_column
563
+ if image_column not in column_names:
564
+ raise ValueError(
565
+ f"`--image_column` value '{args.image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
566
+ )
567
+
568
+ if args.caption_column is None:
569
+ caption_column = column_names[1]
570
+ logger.info(f"caption column defaulting to {caption_column}")
571
+ else:
572
+ caption_column = args.caption_column
573
+ if caption_column not in column_names:
574
+ raise ValueError(
575
+ f"`--caption_column` value '{args.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
576
+ )
577
+
578
+ if args.conditioning_image_column is None:
579
+ conditioning_image_column = column_names[2]
580
+ logger.info(f"conditioning image column defaulting to {caption_column}")
581
+ else:
582
+ conditioning_image_column = args.conditioning_image_column
583
+ if conditioning_image_column not in column_names:
584
+ raise ValueError(
585
+ f"`--conditioning_image_column` value '{args.conditioning_image_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
586
+ )
587
+
588
+ def tokenize_captions(examples, is_train=True):
589
+ captions = []
590
+ for caption in examples[caption_column]:
591
+ if random.random() < args.proportion_empty_prompts:
592
+ captions.append("")
593
+ elif isinstance(caption, str):
594
+ captions.append(caption)
595
+ elif isinstance(caption, (list, np.ndarray)):
596
+ # take a random caption if there are multiple
597
+ captions.append(random.choice(caption) if is_train else caption[0])
598
+ else:
599
+ raise ValueError(
600
+ f"Caption column `{caption_column}` should contain either strings or lists of strings."
601
+ )
602
+ inputs = tokenizer(
603
+ captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
604
+ )
605
+ return inputs.input_ids
606
+
607
+ image_transforms = transforms.Compose(
608
+ [
609
+ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
610
+ transforms.CenterCrop(args.resolution),
611
+ transforms.ToTensor(),
612
+ transforms.Normalize([0.5], [0.5]),
613
+ ]
614
+ )
615
+
616
+ conditioning_image_transforms = transforms.Compose(
617
+ [
618
+ transforms.Resize(args.resolution, interpolation=transforms.InterpolationMode.BILINEAR),
619
+ transforms.CenterCrop(args.resolution),
620
+ transforms.ToTensor(),
621
+ ]
622
+ )
623
+
624
+ def preprocess_train(examples):
625
+ images = [image.convert("RGB") for image in examples[image_column]]
626
+ images = [image_transforms(image) for image in images]
627
+
628
+ conditioning_images = [image.convert("RGB") for image in examples[conditioning_image_column]]
629
+ conditioning_images = [conditioning_image_transforms(image) for image in conditioning_images]
630
+
631
+ examples["pixel_values"] = images
632
+ examples["conditioning_pixel_values"] = conditioning_images
633
+ examples["input_ids"] = tokenize_captions(examples)
634
+
635
+ return examples
636
+
637
+ if jax.process_index() == 0:
638
+ if args.max_train_samples is not None:
639
+ if args.streaming:
640
+ dataset["train"] = dataset["train"].shuffle(seed=args.seed).take(args.max_train_samples)
641
+ else:
642
+ dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
643
+ # Set the training transforms
644
+ if args.streaming:
645
+ train_dataset = dataset["train"].map(
646
+ preprocess_train,
647
+ batched=True,
648
+ batch_size=batch_size,
649
+ remove_columns=list(dataset["train"].features.keys()),
650
+ )
651
+ else:
652
+ train_dataset = dataset["train"].with_transform(preprocess_train)
653
+
654
+ return train_dataset
655
+
656
+
657
+ def collate_fn(examples):
658
+ pixel_values = torch.stack([example["pixel_values"] for example in examples])
659
+ pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
660
+
661
+ conditioning_pixel_values = torch.stack([example["conditioning_pixel_values"] for example in examples])
662
+ conditioning_pixel_values = conditioning_pixel_values.to(memory_format=torch.contiguous_format).float()
663
+
664
+ input_ids = torch.stack([example["input_ids"] for example in examples])
665
+
666
+ batch = {
667
+ "pixel_values": pixel_values,
668
+ "conditioning_pixel_values": conditioning_pixel_values,
669
+ "input_ids": input_ids,
670
+ }
671
+ batch = {k: v.numpy() for k, v in batch.items()}
672
+ return batch
673
+
674
+
675
+ def get_params_to_save(params):
676
+ return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
677
+
678
+
679
+ def main():
680
+ args = parse_args()
681
+
682
+ logging.basicConfig(
683
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
684
+ datefmt="%m/%d/%Y %H:%M:%S",
685
+ level=logging.INFO,
686
+ )
687
+ # Setup logging, we only want one process per machine to log things on the screen.
688
+ logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
689
+ if jax.process_index() == 0:
690
+ transformers.utils.logging.set_verbosity_info()
691
+ else:
692
+ transformers.utils.logging.set_verbosity_error()
693
+
694
+ # wandb init
695
+ if jax.process_index() == 0 and args.report_to == "wandb":
696
+ wandb.init(
697
+ entity=args.wandb_entity,
698
+ project=args.tracker_project_name,
699
+ job_type="train",
700
+ config=args,
701
+ )
702
+
703
+ if args.seed is not None:
704
+ set_seed(args.seed)
705
+
706
+ rng = jax.random.PRNGKey(0)
707
+
708
+ # Handle the repository creation
709
+ if jax.process_index() == 0:
710
+ if args.output_dir is not None:
711
+ os.makedirs(args.output_dir, exist_ok=True)
712
+
713
+ if args.push_to_hub:
714
+ repo_id = create_repo(
715
+ repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
716
+ ).repo_id
717
+
718
+ # Load the tokenizer and add the placeholder token as a additional special token
719
+ if args.tokenizer_name:
720
+ tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
721
+ elif args.pretrained_model_name_or_path:
722
+ tokenizer = CLIPTokenizer.from_pretrained(
723
+ args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
724
+ )
725
+ else:
726
+ raise NotImplementedError("No tokenizer specified!")
727
+
728
+ # Get the datasets: you can either provide your own training and evaluation files (see below)
729
+ total_train_batch_size = args.train_batch_size * jax.local_device_count() * args.gradient_accumulation_steps
730
+ train_dataset = make_train_dataset(args, tokenizer, batch_size=total_train_batch_size)
731
+
732
+ train_dataloader = torch.utils.data.DataLoader(
733
+ train_dataset,
734
+ shuffle=not args.streaming,
735
+ collate_fn=collate_fn,
736
+ batch_size=total_train_batch_size,
737
+ num_workers=args.dataloader_num_workers,
738
+ drop_last=True,
739
+ )
740
+
741
+ weight_dtype = jnp.float32
742
+ if args.mixed_precision == "fp16":
743
+ weight_dtype = jnp.float16
744
+ elif args.mixed_precision == "bf16":
745
+ weight_dtype = jnp.bfloat16
746
+
747
+ # Load models and create wrapper for stable diffusion
748
+ text_encoder = FlaxCLIPTextModel.from_pretrained(
749
+ args.pretrained_model_name_or_path,
750
+ subfolder="text_encoder",
751
+ dtype=weight_dtype,
752
+ revision=args.revision,
753
+ from_pt=args.from_pt,
754
+ )
755
+ vae, vae_params = FlaxAutoencoderKL.from_pretrained(
756
+ args.pretrained_model_name_or_path,
757
+ revision=args.revision,
758
+ subfolder="vae",
759
+ dtype=weight_dtype,
760
+ from_pt=args.from_pt,
761
+ )
762
+ unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(
763
+ args.pretrained_model_name_or_path,
764
+ subfolder="unet",
765
+ dtype=weight_dtype,
766
+ revision=args.revision,
767
+ from_pt=args.from_pt,
768
+ )
769
+
770
+ if args.controlnet_model_name_or_path:
771
+ logger.info("Loading existing controlnet weights")
772
+ controlnet, controlnet_params = FlaxControlNetModel.from_pretrained(
773
+ args.controlnet_model_name_or_path,
774
+ revision=args.controlnet_revision,
775
+ from_pt=args.controlnet_from_pt,
776
+ dtype=jnp.float32,
777
+ )
778
+ else:
779
+ logger.info("Initializing controlnet weights from unet")
780
+ rng, rng_params = jax.random.split(rng)
781
+
782
+ controlnet = FlaxControlNetModel(
783
+ in_channels=unet.config.in_channels,
784
+ down_block_types=unet.config.down_block_types,
785
+ only_cross_attention=unet.config.only_cross_attention,
786
+ block_out_channels=unet.config.block_out_channels,
787
+ layers_per_block=unet.config.layers_per_block,
788
+ attention_head_dim=unet.config.attention_head_dim,
789
+ cross_attention_dim=unet.config.cross_attention_dim,
790
+ use_linear_projection=unet.config.use_linear_projection,
791
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
792
+ freq_shift=unet.config.freq_shift,
793
+ )
794
+ controlnet_params = controlnet.init_weights(rng=rng_params)
795
+ controlnet_params = unfreeze(controlnet_params)
796
+ for key in [
797
+ "conv_in",
798
+ "time_embedding",
799
+ "down_blocks_0",
800
+ "down_blocks_1",
801
+ "down_blocks_2",
802
+ "down_blocks_3",
803
+ "mid_block",
804
+ ]:
805
+ controlnet_params[key] = unet_params[key]
806
+
807
+ # Optimization
808
+ if args.scale_lr:
809
+ args.learning_rate = args.learning_rate * total_train_batch_size
810
+
811
+ constant_scheduler = optax.constant_schedule(args.learning_rate)
812
+
813
+ adamw = optax.adamw(
814
+ learning_rate=constant_scheduler,
815
+ b1=args.adam_beta1,
816
+ b2=args.adam_beta2,
817
+ eps=args.adam_epsilon,
818
+ weight_decay=args.adam_weight_decay,
819
+ )
820
+
821
+ optimizer = optax.chain(
822
+ optax.clip_by_global_norm(args.max_grad_norm),
823
+ adamw,
824
+ )
825
+
826
+ state = train_state.TrainState.create(apply_fn=controlnet.__call__, params=controlnet_params, tx=optimizer)
827
+
828
+ noise_scheduler, noise_scheduler_state = FlaxDDPMScheduler.from_pretrained(
829
+ args.pretrained_model_name_or_path, subfolder="scheduler"
830
+ )
831
+
832
+ # Initialize our training
833
+ validation_rng, train_rngs = jax.random.split(rng)
834
+ train_rngs = jax.random.split(train_rngs, jax.local_device_count())
835
+
836
+ def compute_snr(timesteps):
837
+ """
838
+ Computes SNR as per https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
839
+ """
840
+ alphas_cumprod = noise_scheduler_state.common.alphas_cumprod
841
+ sqrt_alphas_cumprod = alphas_cumprod**0.5
842
+ sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5
843
+
844
+ alpha = sqrt_alphas_cumprod[timesteps]
845
+ sigma = sqrt_one_minus_alphas_cumprod[timesteps]
846
+ # Compute SNR.
847
+ snr = (alpha / sigma) ** 2
848
+ return snr
849
+
850
+ def train_step(state, unet_params, text_encoder_params, vae_params, batch, train_rng):
851
+ # reshape batch, add grad_step_dim if gradient_accumulation_steps > 1
852
+ if args.gradient_accumulation_steps > 1:
853
+ grad_steps = args.gradient_accumulation_steps
854
+ batch = jax.tree_map(lambda x: x.reshape((grad_steps, x.shape[0] // grad_steps) + x.shape[1:]), batch)
855
+
856
+ def compute_loss(params, minibatch, sample_rng):
857
+ # Convert images to latent space
858
+ vae_outputs = vae.apply(
859
+ {"params": vae_params}, minibatch["pixel_values"], deterministic=True, method=vae.encode
860
+ )
861
+ latents = vae_outputs.latent_dist.sample(sample_rng)
862
+ # (NHWC) -> (NCHW)
863
+ latents = jnp.transpose(latents, (0, 3, 1, 2))
864
+ latents = latents * vae.config.scaling_factor
865
+
866
+ # Sample noise that we'll add to the latents
867
+ noise_rng, timestep_rng = jax.random.split(sample_rng)
868
+ noise = jax.random.normal(noise_rng, latents.shape)
869
+ # Sample a random timestep for each image
870
+ bsz = latents.shape[0]
871
+ timesteps = jax.random.randint(
872
+ timestep_rng,
873
+ (bsz,),
874
+ 0,
875
+ noise_scheduler.config.num_train_timesteps,
876
+ )
877
+
878
+ # Add noise to the latents according to the noise magnitude at each timestep
879
+ # (this is the forward diffusion process)
880
+ noisy_latents = noise_scheduler.add_noise(noise_scheduler_state, latents, noise, timesteps)
881
+
882
+ # Get the text embedding for conditioning
883
+ encoder_hidden_states = text_encoder(
884
+ minibatch["input_ids"],
885
+ params=text_encoder_params,
886
+ train=False,
887
+ )[0]
888
+
889
+ controlnet_cond = minibatch["conditioning_pixel_values"]
890
+
891
+ # Predict the noise residual and compute loss
892
+ down_block_res_samples, mid_block_res_sample = controlnet.apply(
893
+ {"params": params},
894
+ noisy_latents,
895
+ timesteps,
896
+ encoder_hidden_states,
897
+ controlnet_cond,
898
+ train=True,
899
+ return_dict=False,
900
+ )
901
+
902
+ model_pred = unet.apply(
903
+ {"params": unet_params},
904
+ noisy_latents,
905
+ timesteps,
906
+ encoder_hidden_states,
907
+ down_block_additional_residuals=down_block_res_samples,
908
+ mid_block_additional_residual=mid_block_res_sample,
909
+ ).sample
910
+
911
+ # Get the target for loss depending on the prediction type
912
+ if noise_scheduler.config.prediction_type == "epsilon":
913
+ target = noise
914
+ elif noise_scheduler.config.prediction_type == "v_prediction":
915
+ target = noise_scheduler.get_velocity(noise_scheduler_state, latents, noise, timesteps)
916
+ else:
917
+ raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
918
+
919
+ loss = (target - model_pred) ** 2
920
+
921
+ if args.snr_gamma is not None:
922
+ snr = jnp.array(compute_snr(timesteps))
923
+ snr_loss_weights = jnp.where(snr < args.snr_gamma, snr, jnp.ones_like(snr) * args.snr_gamma) / snr
924
+ loss = loss * snr_loss_weights
925
+
926
+ loss = loss.mean()
927
+
928
+ return loss
929
+
930
+ grad_fn = jax.value_and_grad(compute_loss)
931
+
932
+ # get a minibatch (one gradient accumulation slice)
933
+ def get_minibatch(batch, grad_idx):
934
+ return jax.tree_util.tree_map(
935
+ lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False),
936
+ batch,
937
+ )
938
+
939
+ def loss_and_grad(grad_idx, train_rng):
940
+ # create minibatch for the grad step
941
+ minibatch = get_minibatch(batch, grad_idx) if grad_idx is not None else batch
942
+ sample_rng, train_rng = jax.random.split(train_rng, 2)
943
+ loss, grad = grad_fn(state.params, minibatch, sample_rng)
944
+ return loss, grad, train_rng
945
+
946
+ if args.gradient_accumulation_steps == 1:
947
+ loss, grad, new_train_rng = loss_and_grad(None, train_rng)
948
+ else:
949
+ init_loss_grad_rng = (
950
+ 0.0, # initial value for cumul_loss
951
+ jax.tree_map(jnp.zeros_like, state.params), # initial value for cumul_grad
952
+ train_rng, # initial value for train_rng
953
+ )
954
+
955
+ def cumul_grad_step(grad_idx, loss_grad_rng):
956
+ cumul_loss, cumul_grad, train_rng = loss_grad_rng
957
+ loss, grad, new_train_rng = loss_and_grad(grad_idx, train_rng)
958
+ cumul_loss, cumul_grad = jax.tree_map(jnp.add, (cumul_loss, cumul_grad), (loss, grad))
959
+ return cumul_loss, cumul_grad, new_train_rng
960
+
961
+ loss, grad, new_train_rng = jax.lax.fori_loop(
962
+ 0,
963
+ args.gradient_accumulation_steps,
964
+ cumul_grad_step,
965
+ init_loss_grad_rng,
966
+ )
967
+ loss, grad = jax.tree_map(lambda x: x / args.gradient_accumulation_steps, (loss, grad))
968
+
969
+ grad = jax.lax.pmean(grad, "batch")
970
+
971
+ new_state = state.apply_gradients(grads=grad)
972
+
973
+ metrics = {"loss": loss}
974
+ metrics = jax.lax.pmean(metrics, axis_name="batch")
975
+
976
+ def l2(xs):
977
+ return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)]))
978
+
979
+ metrics["l2_grads"] = l2(jax.tree_util.tree_leaves(grad))
980
+
981
+ return new_state, metrics, new_train_rng
982
+
983
+ # Create parallel version of the train step
984
+ p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
985
+
986
+ # Replicate the train state on each device
987
+ state = jax_utils.replicate(state)
988
+ unet_params = jax_utils.replicate(unet_params)
989
+ text_encoder_params = jax_utils.replicate(text_encoder.params)
990
+ vae_params = jax_utils.replicate(vae_params)
991
+
992
+ # Train!
993
+ if args.streaming:
994
+ dataset_length = args.max_train_samples
995
+ else:
996
+ dataset_length = len(train_dataloader)
997
+ num_update_steps_per_epoch = math.ceil(dataset_length / args.gradient_accumulation_steps)
998
+
999
+ # Scheduler and math around the number of training steps.
1000
+ if args.max_train_steps is None:
1001
+ args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
1002
+
1003
+ args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
1004
+
1005
+ logger.info("***** Running training *****")
1006
+ logger.info(f" Num examples = {args.max_train_samples if args.streaming else len(train_dataset)}")
1007
+ logger.info(f" Num Epochs = {args.num_train_epochs}")
1008
+ logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
1009
+ logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
1010
+ logger.info(f" Total optimization steps = {args.num_train_epochs * num_update_steps_per_epoch}")
1011
+
1012
+ if jax.process_index() == 0 and args.report_to == "wandb":
1013
+ wandb.define_metric("*", step_metric="train/step")
1014
+ wandb.define_metric("train/step", step_metric="walltime")
1015
+ wandb.config.update(
1016
+ {
1017
+ "num_train_examples": args.max_train_samples if args.streaming else len(train_dataset),
1018
+ "total_train_batch_size": total_train_batch_size,
1019
+ "total_optimization_step": args.num_train_epochs * num_update_steps_per_epoch,
1020
+ "num_devices": jax.device_count(),
1021
+ "controlnet_params": sum(np.prod(x.shape) for x in jax.tree_util.tree_leaves(state.params)),
1022
+ }
1023
+ )
1024
+
1025
+ global_step = step0 = 0
1026
+ epochs = tqdm(
1027
+ range(args.num_train_epochs),
1028
+ desc="Epoch ... ",
1029
+ position=0,
1030
+ disable=jax.process_index() > 0,
1031
+ )
1032
+ if args.profile_memory:
1033
+ jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_initial.prof"))
1034
+ t00 = t0 = time.monotonic()
1035
+ for epoch in epochs:
1036
+ # ======================== Training ================================
1037
+
1038
+ train_metrics = []
1039
+ train_metric = None
1040
+
1041
+ steps_per_epoch = (
1042
+ args.max_train_samples // total_train_batch_size
1043
+ if args.streaming or args.max_train_samples
1044
+ else len(train_dataset) // total_train_batch_size
1045
+ )
1046
+ train_step_progress_bar = tqdm(
1047
+ total=steps_per_epoch,
1048
+ desc="Training...",
1049
+ position=1,
1050
+ leave=False,
1051
+ disable=jax.process_index() > 0,
1052
+ )
1053
+ # train
1054
+ for batch in train_dataloader:
1055
+ if args.profile_steps and global_step == 1:
1056
+ train_metric["loss"].block_until_ready()
1057
+ jax.profiler.start_trace(args.output_dir)
1058
+ if args.profile_steps and global_step == 1 + args.profile_steps:
1059
+ train_metric["loss"].block_until_ready()
1060
+ jax.profiler.stop_trace()
1061
+
1062
+ batch = shard(batch)
1063
+ with jax.profiler.StepTraceAnnotation("train", step_num=global_step):
1064
+ state, train_metric, train_rngs = p_train_step(
1065
+ state, unet_params, text_encoder_params, vae_params, batch, train_rngs
1066
+ )
1067
+ train_metrics.append(train_metric)
1068
+
1069
+ train_step_progress_bar.update(1)
1070
+
1071
+ global_step += 1
1072
+ if global_step >= args.max_train_steps:
1073
+ break
1074
+
1075
+ if (
1076
+ args.validation_prompt is not None
1077
+ and global_step % args.validation_steps == 0
1078
+ and jax.process_index() == 0
1079
+ ):
1080
+ _ = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype)
1081
+
1082
+ if global_step % args.logging_steps == 0 and jax.process_index() == 0:
1083
+ if args.report_to == "wandb":
1084
+ train_metrics = jax_utils.unreplicate(train_metrics)
1085
+ train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics)
1086
+ wandb.log(
1087
+ {
1088
+ "walltime": time.monotonic() - t00,
1089
+ "train/step": global_step,
1090
+ "train/epoch": global_step / dataset_length,
1091
+ "train/steps_per_sec": (global_step - step0) / (time.monotonic() - t0),
1092
+ **{f"train/{k}": v for k, v in train_metrics.items()},
1093
+ }
1094
+ )
1095
+ t0, step0 = time.monotonic(), global_step
1096
+ train_metrics = []
1097
+ if global_step % args.checkpointing_steps == 0 and jax.process_index() == 0:
1098
+ controlnet.save_pretrained(
1099
+ f"{args.output_dir}/{global_step}",
1100
+ params=get_params_to_save(state.params),
1101
+ )
1102
+
1103
+ train_metric = jax_utils.unreplicate(train_metric)
1104
+ train_step_progress_bar.close()
1105
+ epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
1106
+
1107
+ # Final validation & store model.
1108
+ if jax.process_index() == 0:
1109
+ if args.validation_prompt is not None:
1110
+ if args.profile_validation:
1111
+ jax.profiler.start_trace(args.output_dir)
1112
+ image_logs = log_validation(controlnet, state.params, tokenizer, args, validation_rng, weight_dtype)
1113
+ if args.profile_validation:
1114
+ jax.profiler.stop_trace()
1115
+ else:
1116
+ image_logs = None
1117
+
1118
+ controlnet.save_pretrained(
1119
+ args.output_dir,
1120
+ params=get_params_to_save(state.params),
1121
+ )
1122
+
1123
+ if args.push_to_hub:
1124
+ save_model_card(
1125
+ repo_id,
1126
+ image_logs=image_logs,
1127
+ base_model=args.pretrained_model_name_or_path,
1128
+ repo_folder=args.output_dir,
1129
+ )
1130
+ upload_folder(
1131
+ repo_id=repo_id,
1132
+ folder_path=args.output_dir,
1133
+ commit_message="End of training",
1134
+ ignore_patterns=["step_*", "epoch_*"],
1135
+ )
1136
+
1137
+ if args.profile_memory:
1138
+ jax.profiler.save_device_memory_profile(os.path.join(args.output_dir, "memory_final.prof"))
1139
+ logger.info("Finished training.")
1140
+
1141
+
1142
+ if __name__ == "__main__":
1143
+ main()