|
import subprocess |
|
from datasets import load_dataset, Dataset |
|
import json |
|
from tqdm import tqdm |
|
|
|
ds = load_dataset("bigcode/the-stack-smol", data_dir='data/typescript') |
|
|
|
def split_ts_into_chunks(ts_code): |
|
result = subprocess.run( |
|
['node', 'parse_ts.js'], |
|
input=ts_code, |
|
text=True, |
|
) |
|
|
|
if result.returncode != 0: |
|
raise Exception('Error in TypeScript parsing') |
|
|
|
with open('semantic_chunks.jsonl', 'r') as file: |
|
lines = file.read().splitlines() |
|
|
|
chunks = [json.loads(line) for line in lines] |
|
with open('semantic_chunks.jsonl', 'w'): |
|
pass |
|
|
|
return chunks |
|
|
|
|
|
def chunk_ts_file(data): |
|
funcs = split_ts_into_chunks(data['content']) |
|
for i in range(len(funcs)): |
|
funcs[i]['repo'] = data['repository_name'] |
|
funcs[i]['path'] = data['path'] |
|
funcs[i]['language'] = data['lang'] |
|
return funcs |
|
|
|
chunks = [] |
|
for i in tqdm(range(len(ds['train']))): |
|
chunk = chunk_ts_file(ds['train'][i]) |
|
chunks +=(chunk) |
|
if i%100 == 0: |
|
print(len(chunks)) |
|
|
|
dataset = Dataset.from_list(chunks) |
|
print(dataset) |
|
dataset.to_json('ts-chunks.json') |
|
|