medical_qa_ru_data / medical_qa_ru_data.py
blinoff's picture
Update medical_qa_ru_data.py
2a3a132
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Russian Q&A posts from a medical related forum"""
import csv
import datasets
_DESCRIPTION = """\
This dataset contains 190,335 Russian Q&A posts from a medical related forum.
"""
class MedicalQARuData(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features(
{
"date": datasets.Value("string"),
"categ": datasets.Value("string"),
"theme": datasets.Value("string"),
"desc": datasets.Value("string"),
"ans": datasets.Value("string"),
"spec10": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
)
def _split_generators(self, dl_manager):
urls_to_download = {
"train": "medical_qa_ru_data.csv"
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]})
]
#data_file = dl_manager.download_and_extract(_URL)
#return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file})]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, encoding="utf-8") as f:
data = csv.reader(f)
for id_, row in enumerate(data):
if id_>0:
yield id_, {
"date": row[0],
"categ": row[1],
"theme": row[2],
"desc": row[3],
"ans": row[4],
"spec10": row[5],
}