|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Russian Q&A posts from a medical related forum""" |
|
|
|
|
|
import csv |
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains 190,335 Russian Q&A posts from a medical related forum. |
|
""" |
|
|
|
class MedicalQARuData(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"date": datasets.Value("string"), |
|
"categ": datasets.Value("string"), |
|
"theme": datasets.Value("string"), |
|
"desc": datasets.Value("string"), |
|
"ans": datasets.Value("string"), |
|
"spec10": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = { |
|
"train": "medical_qa_ru_data.csv" |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}) |
|
] |
|
|
|
|
|
|
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
data = csv.reader(f) |
|
for id_, row in enumerate(data): |
|
if id_>0: |
|
yield id_, { |
|
"date": row[0], |
|
"categ": row[1], |
|
"theme": row[2], |
|
"desc": row[3], |
|
"ans": row[4], |
|
"spec10": row[5], |
|
} |