EC2 Default User
commited on
Commit
•
6c1102a
1
Parent(s):
7a718ee
Remove protein atlas data and add additional metadata
Browse files- README.md +14 -20
- deeploc-test.parquet +2 -2
- deeploc-train.parquet +2 -2
- deploc-val.parquet +2 -2
- prep.py +12 -12
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
license: cc-by-
|
3 |
---
|
4 |
|
5 |
# DeepLoc-2.0 Training Data
|
@@ -11,22 +11,22 @@ Data downloaded and processed using the following Python script:
|
|
11 |
|
12 |
```python
|
13 |
import pandas as pd
|
14 |
-
from sklearn.model_selection import train_test_split
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
train = train.melt('Sequence', var_name='Location').query('value == 1.0').drop(labels='value', axis=1)
|
19 |
|
20 |
-
train
|
21 |
-
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
test = test.
|
26 |
|
27 |
-
train.to_parquet('
|
28 |
-
val.to_parquet('
|
29 |
-
test.to_parquet('
|
30 |
```
|
31 |
|
32 |
## Citation
|
@@ -37,7 +37,7 @@ test.to_parquet('data/deeploc/deeploc-test.parquet', index=False)
|
|
37 |
Vineet Thumuluri and others, DeepLoc 2.0: multi-label subcellular localization prediction using protein language models, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W228–W234, https://doi.org/10.1093/nar/gkac278
|
38 |
```
|
39 |
|
40 |
-
The DeepLoc data is a derivative of the
|
41 |
|
42 |
**UniProt**
|
43 |
|
@@ -46,9 +46,3 @@ The UniProt Consortium
|
|
46 |
UniProt: the Universal Protein Knowledgebase in 2023
|
47 |
Nucleic Acids Res. 51:D523–D531 (2023)
|
48 |
```
|
49 |
-
|
50 |
-
**The Human Protein Atlas**
|
51 |
-
|
52 |
-
```
|
53 |
-
Mathias Uhlén et al.,Tissue-based map of the human proteome.Science347,1260419(2015).DOI:10.1126/science.1260419
|
54 |
-
```
|
|
|
1 |
---
|
2 |
+
license: cc-by-4.0
|
3 |
---
|
4 |
|
5 |
# DeepLoc-2.0 Training Data
|
|
|
11 |
|
12 |
```python
|
13 |
import pandas as pd
|
|
|
14 |
|
15 |
+
df = pd.read_csv('https://services.healthtech.dtu.dk/services/DeepLoc-2.0/data/Swissprot_Train_Validation_dataset.csv').drop(['Unnamed: 0', 'Partition'], axis=1)
|
16 |
+
df = df.melt(['Kingdom', 'ACC', 'Sequence','Membrane'], var_name='Location').query('value == 1.0').drop(labels='value', axis=1).astype({'Membrane': 'int8'})
|
|
|
17 |
|
18 |
+
train = df.sample(frac=0.8)
|
19 |
+
df = df.drop(train.index)
|
20 |
+
val = df.sample(frac=0.5)
|
21 |
+
test = df.drop(val.index)
|
22 |
|
23 |
+
train = train.reset_index(drop=True)
|
24 |
+
val = val.reset_index(drop=True)
|
25 |
+
test = test.reset_index(drop=True)
|
26 |
|
27 |
+
train.to_parquet('deeploc-train.parquet', index=False)
|
28 |
+
val.to_parquet('deploc-val.parquet', index=False)
|
29 |
+
test.to_parquet('deeploc-test.parquet', index=False)
|
30 |
```
|
31 |
|
32 |
## Citation
|
|
|
37 |
Vineet Thumuluri and others, DeepLoc 2.0: multi-label subcellular localization prediction using protein language models, Nucleic Acids Research, Volume 50, Issue W1, 5 July 2022, Pages W228–W234, https://doi.org/10.1093/nar/gkac278
|
38 |
```
|
39 |
|
40 |
+
The DeepLoc data is a derivative of the UniProt dataset:
|
41 |
|
42 |
**UniProt**
|
43 |
|
|
|
46 |
UniProt: the Universal Protein Knowledgebase in 2023
|
47 |
Nucleic Acids Res. 51:D523–D531 (2023)
|
48 |
```
|
|
|
|
|
|
|
|
|
|
|
|
deeploc-test.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1e282132ec5d2681ca04ba6f131a4d13cf231b61c47186e3a53691791dcc036
|
3 |
+
size 2016514
|
deeploc-train.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e60d7303b0cac6bfc2bb37d6671304b19f0846a197e58dc125143d3cacfc6ee
|
3 |
+
size 16422156
|
deploc-val.parquet
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d0a708c9338df6177c58fa5ee70c02f1e4fe1b47f79a5a36ec7ed9ad1ca8d0a
|
3 |
+
size 2045512
|
prep.py
CHANGED
@@ -1,17 +1,17 @@
|
|
1 |
import pandas as pd
|
2 |
-
from sklearn.model_selection import train_test_split
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
train = train.melt('Sequence', var_name='Location').query('value == 1.0').drop(labels='value', axis=1)
|
7 |
|
8 |
-
train
|
9 |
-
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
test = test.
|
14 |
|
15 |
-
train.to_parquet('
|
16 |
-
val.to_parquet('
|
17 |
-
test.to_parquet('
|
|
|
1 |
import pandas as pd
|
|
|
2 |
|
3 |
+
df = pd.read_csv('https://services.healthtech.dtu.dk/services/DeepLoc-2.0/data/Swissprot_Train_Validation_dataset.csv').drop(['Unnamed: 0', 'Partition'], axis=1)
|
4 |
+
df = df.melt(['Kingdom', 'ACC', 'Sequence','Membrane'], var_name='Location').query('value == 1.0').drop(labels='value', axis=1).astype({'Membrane': 'int8'})
|
|
|
5 |
|
6 |
+
train = df.sample(frac=0.8)
|
7 |
+
df = df.drop(train.index)
|
8 |
+
val = df.sample(frac=0.5)
|
9 |
+
test = df.drop(val.index)
|
10 |
|
11 |
+
train = train.reset_index(drop=True)
|
12 |
+
val = val.reset_index(drop=True)
|
13 |
+
test = test.reset_index(drop=True)
|
14 |
|
15 |
+
train.to_parquet('deeploc-train.parquet', index=False)
|
16 |
+
val.to_parquet('deploc-val.parquet', index=False)
|
17 |
+
test.to_parquet('deeploc-test.parquet', index=False)
|