File size: 2,456 Bytes
6aae2cf
 
373eddf
8e17b21
 
75e52b5
6aae2cf
373eddf
8e17b21
 
373eddf
6aae2cf
373eddf
0d959d7
8f67062
75e52b5
0236f5a
8f67062
373eddf
8e17b21
dd4dc1f
8f67062
373eddf
 
 
 
8e17b21
8f67062
 
8e17b21
8f67062
373eddf
 
 
0236f5a
373eddf
8e17b21
373eddf
 
dd4dc1f
 
 
373eddf
dd4dc1f
 
 
373eddf
 
23dc9d7
75e52b5
dd4dc1f
 
8e17b21
 
 
7304bbb
 
0ee293f
8f67062
0ee293f
7304bbb
8f67062
 
 
 
7304bbb
 
8f67062
0d959d7
373eddf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import boto3
import io
import os
import pandas as pd
import re
import shutil
import tarfile

data_dir = os.getcwd()
output_path = os.getcwd()

species_list = ["rat_SD", "mouse_BALB_c", "mouse_C57BL_6", "human"]

S3_BUCKET = "aws-hcls-ml"
S3_SRC_PREFIX = "oas-paired-sequence-data/raw"
S3_DEST_PREFIX = "oas-paired-sequence-data/parquet"
s3 = boto3.client("s3")

for species in species_list:
    print(f"Downloading {species} files")
    list_of_df = []
    species_url_file = os.path.join(data_dir, species + "_oas_data_units.txt")
    with open(species_url_file, "r") as f:
        for csv_file in f.readlines():
            print(csv_file)
            filename = os.path.basename(csv_file)
            run_id = str(re.search(r"^(.*)_[Pp]aired", filename)[1])
            s3_key = os.path.join(S3_SRC_PREFIX, species, csv_file.strip())
            obj = s3.get_object(Bucket=S3_BUCKET, Key=s3_key)
            run_data = pd.read_csv(
                io.BytesIO(obj["Body"].read()),
                header=1,
                compression="gzip",
                on_bad_lines="warn",
                low_memory=False,
            )
            run_data = run_data[
                [
                    "sequence_alignment_aa_heavy",
                    "cdr1_aa_heavy",
                    "cdr2_aa_heavy",
                    "cdr3_aa_heavy",
                    "sequence_alignment_aa_light",
                    "cdr1_aa_light",
                    "cdr2_aa_light",
                    "cdr3_aa_light",
                ]
            ]
            run_data = run_data.dropna()
            run_data.insert(0, "data_unit", run_id)
            list_of_df.append(run_data)
        species_df = pd.concat(list_of_df, ignore_index=True)
        print(f"{species} output summary:")
        print(species_df.head())
        print(species_df.shape)
        os.makedirs(species, exist_ok=True)
        species_df.to_parquet(species, partition_cols=["data_unit"])
        zip_name = species + ".tar.gz"
        print(f"Creating {zip_name}")
        with tarfile.open(zip_name, "w:gz") as tf:
            tf.add(species, arcname="")
        print(
            f"Uploading {zip_name} to {os.path.join('s3://', S3_BUCKET, S3_DEST_PREFIX)}"
        )
        s3.upload_file(zip_name, S3_BUCKET, os.path.join(S3_DEST_PREFIX, zip_name))
        print(f"Removing {species}")
        shutil.rmtree(species)
        print(f"Removing {zip_name}")
        os.remove(zip_name)