oas-paired-sequence-data / src /oas-data-cleaning.py
EC2 Default User
Remove human data temp
8f67062
raw
history blame
3.19 kB
import os
import pandas as pd
import re
from zipfile import ZipFile
import boto3
import io
data_dir = os.getcwd()
output_path = os.getcwd()
# species_list = ["rat_SD", "mouse_BALB_c", "mouse_C57BL_6", "human"]
species_list = ["mouse_BALB_c", "mouse_C57BL_6", "rat_SD"]
S3_BUCKET = "aws-hcls-ml"
S3_SRC_PREFIX = "oas-paired-sequence-data/raw"
S3_DEST_PREFIX = "oas-paired-sequence-data/processed"
s3 = boto3.client("s3")
# def calc_cdr_coordinates(row):
# for i in range(1, 4):
# for j in ["heavy", "light"]:
# row[f"cdr{i}_aa_{j}_start"] = row[f"sequence_alignment_aa_{j}"].find(
# row[f"cdr{i}_aa_{j}"]
# )
# row[f"cdr{i}_aa_{j}_end"] = row[f"cdr{i}_aa_{j}_start"] + len(
# row[f"cdr{i}_aa_{j}"]
# )
# return row
for species in species_list:
print(f"Downloading {species} files")
list_of_df = []
species_url_file = os.path.join(data_dir, species + "_oas_data_units.txt")
with open(species_url_file, "r") as f:
for csv_file in f.readlines():
print(csv_file)
filename = os.path.basename(csv_file)
run_id = str(re.search(r"^(.*)_[Pp]aired", filename)[1])
s3_key = os.path.join(S3_SRC_PREFIX, species, csv_file.strip())
obj = s3.get_object(Bucket=S3_BUCKET, Key=s3_key)
run_data = pd.read_csv(
io.BytesIO(obj["Body"].read()),
header=1,
compression="gzip",
on_bad_lines="warn",
low_memory=False,
)
run_data = run_data[
[
"sequence_alignment_aa_heavy",
"cdr1_aa_heavy",
"cdr2_aa_heavy",
"cdr3_aa_heavy",
"sequence_alignment_aa_light",
"cdr1_aa_light",
"cdr2_aa_light",
"cdr3_aa_light",
]
]
run_data = run_data.dropna()
# run_data = run_data.apply(calc_cdr_coordinates, axis=1)
run_data.insert(
0, "pair_id", run_id + "_" + run_data.reset_index().index.map(str)
)
list_of_df.append(run_data)
species_df = pd.concat(list_of_df, ignore_index=True)
print(f"{species} output summary:")
print(species_df.head())
print(species_df.shape)
output_file_name = os.path.join(output_path, "train.csv")
print(f"Creating {output_file_name}")
# species_df.to_csv(output_file_name, index=False, compression="zip")
species_df.to_csv(output_file_name, index=False)
zip_name = species + ".zip"
print(f"Creating {zip_name}")
with ZipFile(zip_name, "w") as myzip:
myzip.write("train.csv")
print(
f"Uploading {zip_name} to {os.path.join('s3://', S3_BUCKET, S3_DEST_PREFIX)}"
)
s3.upload_file(zip_name, S3_BUCKET, os.path.join(S3_DEST_PREFIX, zip_name))
print(f"Removing {output_file_name}")
os.remove(output_file_name)
print(f"Removing {zip_name}")
os.remove(zip_name)