File size: 21,331 Bytes
ad98ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d425e
ad98ea1
 
 
bf15869
ad98ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98d425e
 
ad98ea1
 
 
 
 
 
 
 
 
 
 
 
 
98d425e
 
 
 
ad98ea1
 
 
 
 
 
98d425e
ad98ea1
 
 
 
98d425e
bf15869
98d425e
 
 
ad98ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac29f28
 
ad98ea1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""


import glob
import os

import pandas as pd

import datasets


_CITATION = """\
@misc{friedrich2020sofcexp,
      title={The SOFC-Exp Corpus and Neural Approaches to Information Extraction in the Materials Science Domain},
      author={Annemarie Friedrich and Heike Adel and Federico Tomazic and Johannes Hingerl and Renou Benteau and Anika Maruscyk and Lukas Lange},
      year={2020},
      eprint={2006.03039},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""

_DESCRIPTION = """\
The SOFC-Exp corpus consists of 45 open-access scholarly articles annotated by domain experts.
A corpus and an inter-annotator agreement study demonstrate the complexity of the suggested
named entity recognition and slot filling tasks as well as high annotation quality is presented
in the accompanying paper.
"""

_HOMEPAGE = "https://arxiv.org/abs/2006.03039"

_LICENSE = ""

_URL = "data.zip"


class SOFCMaterialsArticles(datasets.GeneratorBasedBuilder):
    """ """

    VERSION = datasets.Version("1.1.0")

    def _info(self):
        features = datasets.Features(
            {
                "text": datasets.Value("string"),
                "sentence_offsets": datasets.features.Sequence(
                    {"begin_char_offset": datasets.Value("int64"), "end_char_offset": datasets.Value("int64")}
                ),
                "sentences": datasets.features.Sequence(datasets.Value("string")),
                "sentence_labels": datasets.features.Sequence(datasets.Value("int64")),
                "token_offsets": datasets.features.Sequence(
                    {
                        "offsets": datasets.features.Sequence(
                            {"begin_char_offset": datasets.Value("int64"), "end_char_offset": datasets.Value("int64")}
                        )
                    }
                ),
                "tokens": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))),
                "entity_labels": datasets.features.Sequence(
                    datasets.features.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-DEVICE",
                                "B-EXPERIMENT",
                                "B-MATERIAL",
                                "B-VALUE",
                                "I-DEVICE",
                                "I-EXPERIMENT",
                                "I-MATERIAL",
                                "I-VALUE",
                                "O",
                            ]
                        )
                    )
                ),
                "slot_labels": datasets.features.Sequence(
                    datasets.features.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-anode_material",
                                "B-cathode_material",
                                "B-conductivity",
                                "B-current_density",
                                "B-degradation_rate",
                                "B-device",
                                "B-electrolyte_material",
                                "B-experiment_evoking_word",
                                "B-fuel_used",
                                "B-interlayer_material",
                                "B-interconnect_material",
                                "B-open_circuit_voltage",
                                "B-power_density",
                                "B-resistance",
                                "B-support_material",
                                "B-thickness",
                                "B-time_of_operation",
                                "B-voltage",
                                "B-working_temperature",
                                "I-anode_material",
                                "I-cathode_material",
                                "I-conductivity",
                                "I-current_density",
                                "I-degradation_rate",
                                "I-device",
                                "I-electrolyte_material",
                                "I-experiment_evoking_word",
                                "I-fuel_used",
                                "I-interlayer_material",
                                "I-interconnect_material",
                                "I-open_circuit_voltage",
                                "I-power_density",
                                "I-resistance",
                                "I-support_material",
                                "I-thickness",
                                "I-time_of_operation",
                                "I-voltage",
                                "I-working_temperature",
                                "O",
                            ]
                        )
                    )
                ),
                "links": datasets.Sequence(
                    {
                        "relation_label": datasets.features.ClassLabel(
                            names=["coreference", "experiment_variation", "same_experiment", "thickness"]
                        ),
                        "start_span_id": datasets.Value("int64"),
                        "end_span_id": datasets.Value("int64"),
                    }
                ),
                "slots": datasets.features.Sequence(
                    {
                        "frame_participant_label": datasets.features.ClassLabel(
                            names=[
                                "anode_material",
                                "cathode_material",
                                "current_density",
                                "degradation_rate",
                                "device",
                                "electrolyte_material",
                                "fuel_used",
                                "interlayer_material",
                                "open_circuit_voltage",
                                "power_density",
                                "resistance",
                                "support_material",
                                "time_of_operation",
                                "voltage",
                                "working_temperature",
                            ]
                        ),
                        "slot_id": datasets.Value("int64"),
                    }
                ),
                "spans": datasets.features.Sequence(
                    {
                        "span_id": datasets.Value("int64"),
                        "entity_label": datasets.features.ClassLabel(names=["", "DEVICE", "MATERIAL", "VALUE"]),
                        "sentence_id": datasets.Value("int64"),
                        "experiment_mention_type": datasets.features.ClassLabel(
                            names=["", "current_exp", "future_work", "general_info", "previous_work"]
                        ),
                        "begin_char_offset": datasets.Value("int64"),
                        "end_char_offset": datasets.Value("int64"),
                    }
                ),
                "experiments": datasets.features.Sequence(
                    {
                        "experiment_id": datasets.Value("int64"),
                        "span_id": datasets.Value("int64"),
                        "slots": datasets.features.Sequence(
                            {
                                "frame_participant_label": datasets.features.ClassLabel(
                                    names=[
                                        "anode_material",
                                        "cathode_material",
                                        "current_density",
                                        "degradation_rate",
                                        "conductivity",
                                        "device",
                                        "electrolyte_material",
                                        "fuel_used",
                                        "interlayer_material",
                                        "open_circuit_voltage",
                                        "power_density",
                                        "resistance",
                                        "support_material",
                                        "time_of_operation",
                                        "voltage",
                                        "working_temperature",
                                    ]
                                ),
                                "slot_id": datasets.Value("int64"),
                            }
                        ),
                    }
                ),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        data_dir = dl_manager.download_and_extract(_URL)
        data_dir = os.path.join(data_dir, "sofc-exp-corpus")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "test",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "data_dir": data_dir,
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, data_dir, split):
        """Yields examples."""
        metadata = pd.read_csv(os.path.join(data_dir, "SOFC-Exp-Metadata.csv"), sep="\t")
        names = metadata[metadata["set"] == split]["name"].tolist()

        # The dataset consists of the original article text as well as annotations
        textfile_base_path = os.path.join(data_dir, "texts")
        annotations_base_path = os.path.join(data_dir, "annotations")

        # The annotations are mostly references to offsets in the source text
        # with corresponding labels, so we'll refer to them as `meta`
        sentence_meta_base_path = os.path.join(annotations_base_path, "sentences")
        tokens_meta_base_path = os.path.join(annotations_base_path, "tokens")
        ets_meta_base_path = os.path.join(annotations_base_path, "entity_types_and_slots")
        frame_meta_base_path = os.path.join(annotations_base_path, "frames")

        # Define the headers for the sentence and token and entity metadata
        sentence_meta_header = ["sentence_id", "label", "begin_char_offset", "end_char_offset"]
        tokens_meta_header = ["sentence_id", "token_id", "begin_char_offset", "end_char_offset"]
        ets_meta_header = [
            "sentence_id",
            "token_id",
            "begin_char_offset",
            "end_char_offset",
            "entity_label",
            "slot_label",
        ]

        # Start the processing loop
        # For each text file, we'll load all of the
        # associated annotation files
        for id_, name in enumerate(sorted(names)):
            # Load the main source text
            textfile_path = os.path.join(textfile_base_path, name + ".txt")
            text = open(textfile_path, encoding="utf-8").read()

            # Load the sentence offsets file
            sentence_meta_path = os.path.join(sentence_meta_base_path, name + ".csv")
            sentence_meta = pd.read_csv(sentence_meta_path, sep="\t", names=sentence_meta_header)

            # Load the tokens offsets file
            tokens_meta_path = os.path.join(tokens_meta_base_path, name + ".csv")
            tokens_meta = pd.read_csv(tokens_meta_path, sep="\t", names=tokens_meta_header)

            # Load the entity offsets file
            ets_meta_path = os.path.join(ets_meta_base_path, name + ".csv")
            ets_meta = pd.read_csv(ets_meta_path, sep="\t", names=ets_meta_header)

            # Create a list of lists indexed as [sentence][token] for the entity and slot labels
            entity_labels = ets_meta.groupby("sentence_id").apply(lambda x: x["entity_label"].tolist()).to_list()
            slot_labels = ets_meta.groupby("sentence_id").apply(lambda x: x["slot_label"].tolist()).to_list()

            # Create a list of lists for the token offsets indexed as [sentence][token]
            # Each element will contain a dict with beginning and ending character offsets
            token_offsets = (
                tokens_meta.groupby("sentence_id")[["begin_char_offset", "end_char_offset"]]
                .apply(lambda x: x.to_dict(orient="records"))
                .tolist()
            )

            # Load the frames metadata. The frames file contains the data for all of the annotations
            # in a condensed format that varies throughout the file. More information on this format
            # can be found: https://framenet.icsi.berkeley.edu/fndrupal/
            frames_meta_path = os.path.join(frame_meta_base_path, name + ".csv")
            frames_meta = open(frames_meta_path, encoding="utf-8").readlines()

            # Parse the sentence offsets, producing a list of dicts with the
            # starting and ending position of each sentence in the original text
            sentence_offsets = (
                sentence_meta[["begin_char_offset", "end_char_offset"]].apply(lambda x: x.to_dict(), axis=1).tolist()
            )

            # The sentence labels are a binary label that describes whether the sentence contains
            # any annotations
            sentence_labels = sentence_meta["label"].tolist()

            # Materialiaze a list of strings of the actual sentences
            sentences = [text[ost["begin_char_offset"] : ost["end_char_offset"]] for ost in sentence_offsets]

            # Materialize a list of lists of the tokens in each sentence.
            # Annotation labels are aligned with these tokens, so be careful with
            # alignment if using your own tokenization scheme with the sentences above
            tokens = [
                [s[tto["begin_char_offset"] : tto["end_char_offset"]] for tto in to]
                for s, to in zip(sentences, token_offsets)
            ]

            # The frames file first contains spans annotations (in one format),
            # then contains experiments annotations (in another format),
            # then links annotations (in yet another format).
            # Here we find the beginning of the experiments and links sections of the file
            # Additionally, each experiment annotation in the experiment annotations begins with a
            # line starting with the word EXPERIMENT (in one format)
            # followed by the annotations for that experiment (in yet _another_ format)
            # Here we get the start positions for each experiment _within_ the experiments
            # section of the frames data
            experiment_starts = [i for i, line in enumerate(frames_meta) if line.startswith("EXPERIMENT")]
            experiment_start = min(experiment_starts)
            link_start = min([i for i, line in enumerate(frames_meta) if line.startswith("LINK")])

            # Pick out the spans section of the data for parsing
            spans_raw = frames_meta[:experiment_start]

            # Iterate through the spans data
            spans = []
            for span in spans_raw:
                # Split out the elements in each tab-delimited line
                _, span_id, entity_label_or_exp, sentence_id, begin_char_offset, end_char_offset = span.split("\t")

                # The entity label for experiment spans have a sub-label,
                # called the experiment mention type,
                # which is sub-delimited by a ':'
                # The code below standardizes the fields produced by
                # each line to a common schema, some fields of which may
                # be empty depending on the data available in the line
                if entity_label_or_exp.startswith("EXPERIMENT"):
                    exp, experiment_mention_type = entity_label_or_exp.split(":")
                    entity_label = ""
                else:
                    entity_label = entity_label_or_exp
                    exp = ""
                    experiment_mention_type = ""

                s = {
                    "span_id": span_id,
                    "entity_label": entity_label,
                    "sentence_id": sentence_id,
                    "experiment_mention_type": experiment_mention_type,
                    "begin_char_offset": int(begin_char_offset),
                    "end_char_offset": int(end_char_offset),
                }
                spans.append(s)

            # Pull out the links annotations for from the frames data
            links_raw = [f.rstrip("\n") for f in frames_meta[link_start:]]

            # Iterate through the links data, which is in a simple tab-delimited format
            links = []
            for link in links_raw:
                _, relation_label, start_span_id, end_span_id = link.split("\t")

                link_out = {
                    "relation_label": relation_label,
                    "start_span_id": int(start_span_id),
                    "end_span_id": int(end_span_id),
                }
                links.append(link_out)

            # Iterate through the experiments data and parse each experiment
            experiments = []
            # Zip the experiment start offsets to get start/end position tuples
            # for each experiment in the experiments data
            for start, end in zip(experiment_starts[:-1], experiment_starts[1:]):
                current_experiment = frames_meta[start:end]
                # The first line of each experiment annotation contains the
                # experiment id and the span id
                _, experiment_id, span_id = current_experiment[0].rstrip("\n").split("\t")
                exp = {"experiment_id": int(experiment_id), "span_id": int(span_id)}

                # The remaining lines in the experiment annotations contain
                # slot level information for each experiment.
                slots = []
                for e in current_experiment[1:]:
                    e = e.rstrip("\n")
                    _, frame_participant_label, slot_id = e.split("\t")
                    to_add = {"frame_participant_label": frame_participant_label, "slot_id": int(slot_id)}
                    slots.append(to_add)
                exp["slots"] = slots

                experiments.append(exp)

            # Yield the final parsed example output
            # NOTE: the `token_offsets` is converted to a list of
            # dicts to accommodate processing to the arrow files
            # in the `features` schema defined above
            yield id_, {
                "text": text,
                "sentence_offsets": sentence_offsets,
                "sentences": sentences,
                "sentence_labels": sentence_labels,
                "token_offsets": [{"offsets": to} for to in token_offsets],
                "tokens": tokens,
                "entity_labels": entity_labels,
                "slot_labels": slot_labels,
                "links": links,
                "slots": slots,
                "spans": spans,
                "experiments": experiments,
            }