Update README.md
Browse files
README.md
CHANGED
@@ -25,3 +25,72 @@ configs:
|
|
25 |
- split: test
|
26 |
path: data/test-*
|
27 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
- split: test
|
26 |
path: data/test-*
|
27 |
---
|
28 |
+
|
29 |
+
Script that created it
|
30 |
+
|
31 |
+
```python
|
32 |
+
import os
|
33 |
+
from huggingface_hub import login
|
34 |
+
from datasets import Dataset, DatasetDict, load_dataset
|
35 |
+
from concurrent.futures import ThreadPoolExecutor
|
36 |
+
|
37 |
+
# Function to load the Hugging Face API token from a file
|
38 |
+
def load_token(file_path: str) -> str:
|
39 |
+
"""Load API token from a specified file path."""
|
40 |
+
with open(os.path.expanduser(file_path)) as f:
|
41 |
+
return f.read().strip()
|
42 |
+
|
43 |
+
# Function to log in to Hugging Face using a token
|
44 |
+
def login_to_huggingface(token: str) -> None:
|
45 |
+
"""Authenticate with Hugging Face Hub."""
|
46 |
+
login(token=token)
|
47 |
+
print("Login successful")
|
48 |
+
|
49 |
+
# Function to sample a specific number of examples from a dataset split
|
50 |
+
def sample_from_split(split_name: str, num_samples: int) -> list:
|
51 |
+
"""Sample a specified number of examples from a dataset split."""
|
52 |
+
c4_split = load_dataset("allenai/c4", "en", split=split_name, streaming=True)
|
53 |
+
samples = []
|
54 |
+
for i, example in enumerate(c4_split):
|
55 |
+
if i >= num_samples:
|
56 |
+
break
|
57 |
+
samples.append(example["text"])
|
58 |
+
return samples
|
59 |
+
|
60 |
+
# Main function to create a smaller C4 dataset with three subsets and upload it
|
61 |
+
def main() -> None:
|
62 |
+
# Step 1: Load token and log in
|
63 |
+
key_file_path: str = "/lfs/skampere1/0/brando9/keys/brandos_hf_token.txt"
|
64 |
+
token: str = load_token(key_file_path)
|
65 |
+
login_to_huggingface(token)
|
66 |
+
|
67 |
+
# Step 2: Define sampling parameters
|
68 |
+
num_samples = 10000
|
69 |
+
|
70 |
+
# Step 3: Sample subsets concurrently
|
71 |
+
with ThreadPoolExecutor(max_workers=3) as executor:
|
72 |
+
future_train = executor.submit(sample_from_split, "train", num_samples)
|
73 |
+
future_val = executor.submit(sample_from_split, "validation", num_samples)
|
74 |
+
future_test = executor.submit(sample_from_split, "validation", num_samples * 2)
|
75 |
+
|
76 |
+
train_samples = future_train.result()
|
77 |
+
val_samples = future_val.result()
|
78 |
+
test_samples = future_test.result()[num_samples:] # Second 10k from validation for test
|
79 |
+
|
80 |
+
# Step 4: Create DatasetDict
|
81 |
+
small_c4_dataset = DatasetDict({
|
82 |
+
"train": Dataset.from_dict({"text": train_samples}),
|
83 |
+
"validation": Dataset.from_dict({"text": val_samples}),
|
84 |
+
"test": Dataset.from_dict({"text": test_samples})
|
85 |
+
})
|
86 |
+
|
87 |
+
# Step 5: Upload to Hugging Face Hub
|
88 |
+
dataset_name_c4: str = "brando/small-c4-dataset"
|
89 |
+
small_c4_dataset.push_to_hub(dataset_name_c4)
|
90 |
+
print(f"Small C4 dataset uploaded to https://huggingface.co/datasets/{dataset_name_c4}")
|
91 |
+
|
92 |
+
# Run the main function
|
93 |
+
if __name__ == "__main__":
|
94 |
+
main()
|
95 |
+
|
96 |
+
```
|