File size: 6,264 Bytes
1cd4314 f38ed63 1cd4314 f38ed63 1cd4314 f38ed63 e82d6b8 b2cb7cb f38ed63 e82d6b8 1cd4314 b2cb7cb 1cd4314 e82d6b8 f38ed63 e82d6b8 1cd4314 b2cb7cb 1cd4314 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LibriVox-Indonesia Dataset"""
import csv
import os
import datasets
from datasets.utils.py_utils import size_str
from .languages import LANGUAGES
from .release_stats import STATS
_CITATION = """\
"""
_HOMEPAGE = "https://huggingface.co/indonesian-nlp/librivox-indonesia"
_LICENSE = "https://creativecommons.org/publicdomain/zero/1.0/"
_DATA_URL = "https://huggingface.co/datasets/indonesian-nlp/librivox-indonesia/resolve/main/data"
class LibriVoxIndonesiaConfig(datasets.BuilderConfig):
"""BuilderConfig for LibriVoxIndonesia."""
def __init__(self, name, version, **kwargs):
self.language = kwargs.pop("language", None)
self.release_date = kwargs.pop("release_date", None)
self.num_clips = kwargs.pop("num_clips", None)
self.num_speakers = kwargs.pop("num_speakers", None)
self.total_hr = kwargs.pop("total_hr", None)
self.size_bytes = kwargs.pop("size_bytes", None)
self.size_human = size_str(self.size_bytes)
description = (
f"LibriVox-Indonesia speech to text dataset in {self.language} released on {self.release_date}. "
f"The dataset comprises {self.total_hr} hours of transcribed speech data"
)
super(LibriVoxIndonesiaConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
**kwargs,
)
class LibriVoxIndonesia(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
LibriVoxIndonesiaConfig(
name=lang,
version=STATS["version"],
language=LANGUAGES[lang],
release_date=STATS["date"],
num_clips=lang_stats["clips"],
num_speakers=lang_stats["users"],
total_hr=float(lang_stats["totalHrs"]) if lang_stats["totalHrs"] else None,
size_bytes=int(lang_stats["size"]) if lang_stats["size"] else None,
)
for lang, lang_stats in STATS["locales"].items()
]
def _info(self):
total_languages = len(STATS["locales"])
total_hours = self.config.total_hr
description = (
"LibriVox-Indonesia is a speech dataset generated from LibriVox with only languages from Indonesia."
f"The dataset currently consists of {total_hours} hours of speech "
f" in {total_languages} languages, but more voices and languages are always added."
)
features = datasets.Features(
{
"path": datasets.Value("string"),
"language": datasets.Value("string"),
"reader": datasets.Value("string"),
"sentence": datasets.Value("string"),
"audio": datasets.features.Audio(sampling_rate=44100)
}
)
return datasets.DatasetInfo(
description=description,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
version=self.config.version,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_manager.download_config.ignore_url_params = True
audio_path = {}
local_extracted_archive = {}
metadata_path = {}
split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
for split in split_type:
audio_path[split] = dl_manager.download(f"{_DATA_URL}/audio_{split}.tgz")
local_extracted_archive[split] = dl_manager.extract(audio_path[split]) if not dl_manager.is_streaming else None
metadata_path[split] = dl_manager.download_and_extract(f"{_DATA_URL}/metadata_{split}.csv.gz")
path_to_clips = "librivox-indonesia"
return [
datasets.SplitGenerator(
name=split_type[split],
gen_kwargs={
"local_extracted_archive": local_extracted_archive[split],
"audio_files": dl_manager.iter_archive(audio_path[split]),
"metadata_path": dl_manager.download_and_extract(metadata_path[split]),
"path_to_clips": path_to_clips,
},
) for split in split_type
]
def _generate_examples(
self,
local_extracted_archive,
audio_files,
metadata_path,
path_to_clips,
):
"""Yields examples."""
data_fields = list(self._info().features.keys())
metadata = {}
with open(metadata_path, "r", encoding="utf-8") as f:
reader = csv.DictReader(f)
for row in reader:
if self.config.name == "all" or self.config.name == row["language"]:
row["path"] = os.path.join(path_to_clips, row["path"])
# if data is incomplete, fill with empty values
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
id_ = 0
for path, f in audio_files:
if path in metadata:
result = dict(metadata[path])
# set the audio feature and the path to the extracted file
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
result["audio"] = {"path": path, "bytes": f.read()}
result["path"] = path
yield id_, result
id_ += 1
|