Update README.md
Browse files
README.md
CHANGED
@@ -16,7 +16,9 @@ tags:
|
|
16 |
- books
|
17 |
- LLM
|
18 |
---
|
19 |
-
# Vector store of embeddings for
|
|
|
|
|
20 |
|
21 |
This is a [faiss](https://github.com/facebookresearch/faiss) vector store created with [instructor embeddings](https://github.com/HKUNLP/instructor-embedding) using [LangChain](https://langchain.readthedocs.io/en/latest/modules/indexes/examples/embeddings.html#instructembeddings) . Use it for similarity search, question answering or anything else that leverages embeddings! 😃
|
22 |
|
@@ -25,8 +27,11 @@ Creating these embeddings can take a while so here's a convenient, downloadable
|
|
25 |
|
26 |
## How to use
|
27 |
|
28 |
-
1.
|
29 |
-
|
|
|
|
|
|
|
30 |
|
31 |
pip install -qqq langchain InstructorEmbedding sentence_transformers faiss-cpu huggingface_hub
|
32 |
|
@@ -36,12 +41,13 @@ from langchain.embeddings import HuggingFaceInstructEmbeddings
|
|
36 |
from langchain.vectorstores.faiss import FAISS
|
37 |
from huggingface_hub import snapshot_download
|
38 |
|
39 |
-
# download the
|
|
|
40 |
cache_dir="orwell_faiss"
|
41 |
vectorstore = snapshot_download(repo_id="calmgoose/orwell-1984_faiss-instructembeddings",
|
42 |
repo_type="dataset",
|
43 |
revision="main",
|
44 |
-
allow_patterns="
|
45 |
cache_dir=cache_dir,
|
46 |
)
|
47 |
|
|
|
16 |
- books
|
17 |
- LLM
|
18 |
---
|
19 |
+
# Vector store of embeddings for books
|
20 |
+
- **"1984" by George Orwell**
|
21 |
+
- **"The Almanac of Naval Ravikant" by Eric Jorgenson**
|
22 |
|
23 |
This is a [faiss](https://github.com/facebookresearch/faiss) vector store created with [instructor embeddings](https://github.com/HKUNLP/instructor-embedding) using [LangChain](https://langchain.readthedocs.io/en/latest/modules/indexes/examples/embeddings.html#instructembeddings) . Use it for similarity search, question answering or anything else that leverages embeddings! 😃
|
24 |
|
|
|
27 |
|
28 |
## How to use
|
29 |
|
30 |
+
1. Specify the book
|
31 |
+
- `1984`
|
32 |
+
- `The Almanac of Naval Ravikant`
|
33 |
+
3. Download data
|
34 |
+
4. Load to use with LangChain
|
35 |
|
36 |
pip install -qqq langchain InstructorEmbedding sentence_transformers faiss-cpu huggingface_hub
|
37 |
|
|
|
41 |
from langchain.vectorstores.faiss import FAISS
|
42 |
from huggingface_hub import snapshot_download
|
43 |
|
44 |
+
# download the vectorstore for the book you want
|
45 |
+
book="1984"
|
46 |
cache_dir="orwell_faiss"
|
47 |
vectorstore = snapshot_download(repo_id="calmgoose/orwell-1984_faiss-instructembeddings",
|
48 |
repo_type="dataset",
|
49 |
revision="main",
|
50 |
+
allow_patterns=f"books/{book}/*",
|
51 |
cache_dir=cache_dir,
|
52 |
)
|
53 |
|