Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- question-answering
|
5 |
+
- summarization
|
6 |
+
- conversational
|
7 |
+
- sentence-similarity
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
pretty_name: Embeddings for George Orwell's 1984
|
11 |
+
tags:
|
12 |
+
- faiss
|
13 |
+
- langchain
|
14 |
+
- instructor embeddings
|
15 |
+
- vector stores
|
16 |
+
- books
|
17 |
+
- LLM
|
18 |
---
|
19 |
+
# Vector store of embeddings for the book "1984" by George Orwell
|
20 |
+
|
21 |
+
This is a [faiss](https://github.com/facebookresearch/faiss) vector store created with [instructor embeddings](https://github.com/HKUNLP/instructor-embedding) using [LangChain](https://langchain.readthedocs.io/en/latest/modules/indexes/examples/embeddings.html#instructembeddings) . Use it for similarity search, question answering or anything else that leverages embeddings! 😃
|
22 |
+
|
23 |
+
Creating these embeddings can take a while so here's a convenient, downloadable one 🤗
|
24 |
+
|
25 |
+
|
26 |
+
## How to use
|
27 |
+
|
28 |
+
1. Download data
|
29 |
+
2. Load to use with LangChain
|
30 |
+
|
31 |
+
pip install -qqq langchain InstructorEmbedding sentence_transformers faiss-cpu huggingface_hub
|
32 |
+
|
33 |
+
```python
|
34 |
+
import os
|
35 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
36 |
+
from langchain.vectorstores.faiss import FAISS
|
37 |
+
from huggingface_hub import snapshot_download
|
38 |
+
|
39 |
+
# download the `vectorstore` folder
|
40 |
+
cache_dir="orwell_faiss"
|
41 |
+
vectorstore = snapshot_download(repo_id="calmgoose/orwell-1984_faiss-instructembeddings",
|
42 |
+
repo_type="dataset",
|
43 |
+
revision="main",
|
44 |
+
allow_patterns="vectorstore/*",
|
45 |
+
cache_dir=cache_dir,
|
46 |
+
)
|
47 |
+
|
48 |
+
# get path to the `vectorstore` folder that you just downloaded
|
49 |
+
# we'll look inside the `cache_dir` for the folder we want
|
50 |
+
target_dir = "vectorstore"
|
51 |
+
|
52 |
+
# Walk through the directory tree recursively
|
53 |
+
for root, dirs, files in os.walk(cache_dir):
|
54 |
+
# Check if the target directory is in the list of directories
|
55 |
+
if target_dir in dirs:
|
56 |
+
# Get the full path of the target directory
|
57 |
+
target_path = os.path.join(root, target_dir)
|
58 |
+
|
59 |
+
# load embeddings
|
60 |
+
# this is what was used to create embeddings for the book
|
61 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
62 |
+
embed_instruction="Represent the book passage for retrieval: ",
|
63 |
+
query_instruction="Represent the question for retrieving supporting texts from the book passage: "
|
64 |
+
)
|
65 |
+
|
66 |
+
# load vector store to use with langchain
|
67 |
+
docsearch = FAISS.load_local(folder_path=target_path, embeddings=embeddings)
|
68 |
+
|
69 |
+
# similarity search
|
70 |
+
question = "Who is big brother?"
|
71 |
+
search = docsearch.similarity_search(question, k=4)
|
72 |
+
|
73 |
+
for item in search:
|
74 |
+
print(item.page_content)
|
75 |
+
print(f"From page: {item.metadata['page']}")
|
76 |
+
print("---")
|
77 |
+
```
|