Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 4,422 Bytes
1bb8d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import json
from random import shuffle, seed
from itertools import permutations
import pandas as pd
from datasets import load_dataset
from lmppl import EncoderDecoderLM, LM, OpenAI

OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)
runs = 3
shots_num = [1, 3]
prompt_dict = {
    "is friend/ally of": "entities that are friends or allies",
    "is competitor/rival of": "entities that are competitors or rivals",
    "is known for": "examples of what entities are known for",
    "is influenced by": "what has influenced different entities",
    "is similar to": "examples of entities that are similar"
}
data = load_dataset("cardiffnlp/relentless_full", split="test")
shots_ref = {}
for shots in shots_num:
    all_perms = list(permutations(range(5), shots))
    seed(42)
    shuffle(all_perms)
    shots_ref[shots] = all_perms

full_result = []
for lm, ppl_class, batch, pretty_name in [
            ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
            ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
            ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
            ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
        ]:
    scorer = None
    for shots in shots_num:
        for s in range(runs):
            os.makedirs(f"experiments/results/lm_qa_{shots}shots_{s}seed/{os.path.basename(lm)}", exist_ok=True)
            for d in data:
                ppl_file = f"experiments/results/lm_qa_{shots}shots_{s}seed/{os.path.basename(lm)}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"

                if not os.path.exists(ppl_file):
                    if scorer is None:
                        if ppl_class is OpenAI:
                            scorer = ppl_class(OPENAI_API_KEY, model=lm)
                        else:
                            scorer = ppl_class(lm, device_map='auto', low_cpu_mem_usage=True, offload_folder=f"./offload_folder/{os.path.basename(lm)}")
                    demo = [d['positive_examples'][h] for h in list(shots_ref[shots][s])]
                    proto = ",".join([f'["{a}", "{b}"]' for a, b in demo])
                    prefix = f"Answer the question by yes or no. We know that {proto} are examples of {prompt_dict[d['relation_type']]}."
                    if ppl_class is LM or ppl_class is OpenAI:
                        prompt_input = [f'{prefix} Are ["{x}", "{y}"] {prompt_dict[d["relation_type"]]} as well?\n yes' for x, y in d['pairs']]
                        ppl = scorer.get_perplexity(input_texts=prompt_input, batch=batch)
                        output = [{"perplexity": p, "input": i, "output": ""} for p, i in zip(ppl, prompt_input)]
                    elif ppl_class is EncoderDecoderLM:
                        prompt_input = [f'{prefix} Are ["{x}", "{y}"] {prompt_dict[d["relation_type"]]} as well?' for x, y in d['pairs']]
                        ppl = scorer.get_perplexity(input_texts=prompt_input, output_texts=["yes"] * len(prompt_input), batch=batch)
                        output = [{"perplexity": p, "input": o, "output": "yes"} for p, o in zip(ppl, prompt_input)]
                    else:
                        raise ValueError(f"Unknown class {ppl_class}")

                    with open(ppl_file, "w") as f:
                        f.write("\n".join([json.dumps(i) for i in output]))

                with open(ppl_file) as f:
                    ppl = [json.loads(i)['perplexity'] for i in f.read().split("\n") if len(i) > 0]
                true_rank = d['ranks']
                assert len(true_rank) == len(ppl), f"Mismatch in number of examples: {len(true_rank)} vs {len(ppl)}"
                rank_map = {p: n for n, p in enumerate(sorted(ppl), 1)}
                prediction = [rank_map[p] for p in ppl]
                tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T
                cor = tmp.corr("spearman").values[0, 1]
                full_result.append({"model": pretty_name, "shot": shots, "seed": s, "relation_type": d['relation_type'], "correlation": cor})

df = pd.DataFrame(full_result)
models = df['model'].unique()
df = df.pivot(columns="relation_type", index=["model", "shot",  "seed"], values="correlation")
df = df.T[models].T
df['average'] = df.mean(1)
df.to_csv(f"experiments/results/lm_qa_fewshots.csv")
df = (100 * df).round()
print(df)
print(df.to_markdown())
print(df.to_latex(escape=False))