Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
File size: 2,921 Bytes
63df4ad
 
 
 
 
 
 
 
 
 
 
1befbcb
 
 
 
 
 
 
 
 
 
 
63df4ad
 
 
 
9323cec
63df4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bd1207
63df4ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e854674
63df4ad
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
from datasets import load_dataset
data = load_dataset(".")
"""
import json
import datasets


logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """ Named-entities Relation Ranking. """
_NAME = "relentless"
_VERSION = "0.2.2"
_CITATION = """
@misc{ushio2023relentless,
      title={A RelEntLess Benchmark for Modelling Graded Relations between Named Entities}, 
      author={Asahi Ushio and Jose Camacho Collados and Steven Schockaert},
      year={2023},
      eprint={2305.15002},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
"""
_HOME_PAGE = "https://huggingface.co/datasets/cardiffnlp/relentless"
_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main'
_URLS = {
    str(datasets.Split.VALIDATION): [f'{_URL}/data/data_processed.new.validation.jsonl'],
    str(datasets.Split.TEST): [f'{_URL}/data/data_processed.new.test.jsonl']
}


class RelentlessConfig(datasets.BuilderConfig):
    """BuilderConfig"""

    def __init__(self, **kwargs):
        """BuilderConfig.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RelentlessConfig, self).__init__(**kwargs)


class Relentless(datasets.GeneratorBasedBuilder):
    """Dataset."""

    BUILDER_CONFIGS = [RelentlessConfig(version=datasets.Version(_VERSION), description=_DESCRIPTION)]

    def _split_generators(self, dl_manager):
        # downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
        downloaded_file = dl_manager.download_and_extract(_URLS)
        return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
                for i in [datasets.Split.VALIDATION]]

    def _generate_examples(self, filepaths):
        _key = 0
        for filepath in filepaths:
            logger.info(f"generating examples from = {filepath}")
            with open(filepath, encoding="utf-8") as f:
                _list = [i for i in f.read().split('\n') if len(i) > 0]
                for i in _list:
                    data = json.loads(i)
                    yield _key, data
                    _key += 1

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "pairs": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "scores_all": datasets.Sequence(datasets.Sequence(datasets.Value('int32'))),
                    "scores_mean": datasets.Sequence(datasets.Value("float32")),
                    "relation_type": datasets.Value("string"),
                    "prototypical_examples": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
                    "ranks": datasets.Sequence(datasets.Value('int32'))
                }
            ),
            supervised_keys=None,
            homepage=_HOME_PAGE,
            citation=_CITATION,
        )