File size: 2,982 Bytes
1bb8d13 7f5f9d0 b016a6f 1bb8d13 4a89ca9 1bb8d13 4a89ca9 1bb8d13 7f5f9d0 1bb8d13 4a89ca9 1bb8d13 b016a6f 1bb8d13 b016a6f 1bb8d13 b016a6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
import json
import pandas as pd
from datasets import load_dataset
pd.set_option('display.max_rows', None)
pd.set_option('display.max_columns', None)
data_valid = load_dataset("cardiffnlp/relentless", split="test")
lc_valid = pd.read_csv("results/lm_lc/lm.csv", index_col=0)
qa_valid = pd.read_csv("results/lm_qa/lm.csv", index_col=0)
data_test = load_dataset("cardiffnlp/relentless", split="test")
lc = pd.read_csv("results/lm_lc/lm.csv", index_col=0)
qa = pd.read_csv("results/lm_qa/lm.csv", index_col=0)
target = {
"flan-t5-xxl": "Flan-T5\textsubscript{XXL}",
"flan-ul2": "Flan-UL2",
"opt-13b": "OPT\textsubscript{13B}",
"davinci": "GPT-3\textsubscript{davinci}"
}
pretty_name = {
'competitor/rival of': "Rival",
'friend/ally of': "Ally",
'influenced by': "Inf",
'known for': "Know",
'similar to': "Sim"
}
p = 30
table = []
for prompt in ['qa', 'lc']:
for i in target.keys():
if i in ['flan-t5-xxl', 'flan-ul2'] and prompt == 'lc':
continue
if i in ['opt-13b', 'davinci'] and prompt == 'qa':
continue
for d in data_test:
with open(f"results/lm_{prompt}/{i}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl") as f:
negative_ppl = sorted([json.loads(x)['perplexity'] * -1 for x in f.read().split("\n") if len(x) > 0], reverse=True)
top_pred = negative_ppl[int(len(negative_ppl) * p / 100)]
bottom_pred = negative_ppl[-int(len(negative_ppl) * p / 100)]
scores = sorted(d['scores_mean'], reverse=True)
top = scores[int(len(scores) * p / 100)]
bottom = scores[-int(len(scores) * p / 100)]
with open(f"results/lm_{prompt}/{i}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl") as f:
negative_ppl_valid = [json.loads(x)['perplexity'] * -1 for x in f.read().split("\n") if len(x) > 0]
_d = [x for x in data_valid if x['relation_type'] == d['relation_type']][0]
scores_val = _d['scores_mean']
false_top = ", ".join([":".join(_d['pairs'][n]) for n, (s, p) in enumerate(zip(scores_val, negative_ppl_valid)) if s <= bottom and p >= top_pred])
false_bottom = ", ".join([":".join(_d['pairs'][n]) for n, (s, p) in enumerate(zip(scores_val, negative_ppl_valid)) if s >= top and p <= bottom_pred])
table.append({
"model": target[i], "relation": pretty_name[d['relation_type']], "top": false_top, "bottom": false_bottom
})
table = pd.DataFrame(table)
table.to_csv("results/qualitative.csv", index=False)
with pd.option_context("max_colwidth", 1000):
_table = table[['model', 'relation', 'top']]
_table = _table[_table['top'].str.len() > 0]
print(_table.to_latex(index=False, escape=False))
_table = table[['model', 'relation', 'bottom']]
_table = _table[_table['bottom'].str.len() > 0]
print(_table.to_latex(index=False, escape=False))
|