|
import json |
|
from itertools import permutations |
|
from string import ascii_letters |
|
from statistics import mean |
|
import numpy as np |
|
import pandas as pd |
|
|
|
with open("data/data_processed.test.jsonl") as f: |
|
data = [json.loads(line) for line in f] |
|
with open("data/data_processed.validation.jsonl") as f: |
|
data += [json.loads(line) for line in f] |
|
|
|
tmp = {} |
|
for i in data: |
|
if i['relation_type'] not in tmp: |
|
tmp[i['relation_type']] = i['scores_all'] |
|
else: |
|
tmp[i['relation_type']] = i['scores_all'] + tmp[i['relation_type']] |
|
num_annotators = len(list(tmp.values())[0][0]) |
|
df = None |
|
for r, scores in tmp.items(): |
|
corr_matrix = np.ones((num_annotators, num_annotators)) * 100 |
|
for a, b in permutations(range(num_annotators), 2): |
|
score_a = [s[a] for s in scores] |
|
score_b = [s[b] for s in scores] |
|
corr_matrix[a][b] = pd.DataFrame([score_a, score_b]).T.corr("spearman").values[0][1] * 100 |
|
corr_df = pd.DataFrame(corr_matrix, columns=[ascii_letters[i].upper() for i in range(num_annotators)], |
|
index=[ascii_letters[i].upper() for i in range(num_annotators)]) |
|
|
|
corr_df['Others'] = [pd.DataFrame([ |
|
[s[a] for s in scores], |
|
[mean(_s for _n, _s in enumerate(s) if _n != a) for s in scores] |
|
]).T.corr("spearman").values[0][1] * 100 for a in range(num_annotators)] |
|
corr_df = corr_df.T |
|
corr_df['Avg'] = corr_df.mean(1) |
|
corr_df = corr_df.T |
|
print(r) |
|
print(corr_df.round(0).astype(int).to_latex()) |
|
print() |
|
if df is None: |
|
df = corr_df |
|
else: |
|
df += corr_df |
|
|
|
df = df/5 |
|
df = df.T |
|
df.pop("Avg") |
|
df['Avg'] = df.mean(1) |
|
df = df.T |
|
print("ALL") |
|
print(df.round(0).astype(int).to_latex()) |
|
|
|
|
|
|