Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
04904fb
1 Parent(s): 6282d60
experiments/baseline_lm_lc.py CHANGED
@@ -19,29 +19,29 @@ prompt_dict = {
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
22
- ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
23
- ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
24
- ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
25
- ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
26
- ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
27
  ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
28
- ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
29
- ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
30
- ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
- ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
 
32
  ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
33
- # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
34
- ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
35
- ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
36
- ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
37
- ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
38
- ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
39
- ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
40
  ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
41
- ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
 
 
 
 
 
 
42
  ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
43
- ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
44
- ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
 
45
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_lc/{os.path.basename(lm)}", exist_ok=True)
@@ -98,3 +98,4 @@ df.to_csv("results/lm_lc/lm.csv")
98
  df = (100 * df).round()
99
  print(df.to_markdown())
100
  print(df.to_latex(escape=False))
 
 
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
 
 
 
 
 
22
  ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
23
+ ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
24
+ ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
25
+ ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
26
+ ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
27
+ ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
28
  ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
29
+ ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
30
+ ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
+ ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
32
+ ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
 
 
 
33
  ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
34
+ ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
35
+ ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
36
+ ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
37
+ ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
38
+ ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
39
+ ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
40
+ # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
41
  ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
42
+ ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
43
+ ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{M-1.3B}"),
44
+ ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{M-30B}"),
45
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_lc/{os.path.basename(lm)}", exist_ok=True)
 
98
  df = (100 * df).round()
99
  print(df.to_markdown())
100
  print(df.to_latex(escape=False))
101
+
experiments/baseline_lm_qa.py CHANGED
@@ -19,29 +19,29 @@ prompt_dict = {
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
22
- ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
23
- ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
24
- ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
25
- ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
26
- ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
27
  ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
28
- ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
29
- ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
30
- ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
- ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
 
32
  ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
33
- # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
34
- ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
35
- ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
36
- ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
37
- ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
38
- ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
39
- ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
40
  ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
41
- ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
 
 
 
 
 
 
42
  ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
43
- ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
44
- ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
 
45
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
 
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
 
 
 
 
 
22
  ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
23
+ ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
24
+ ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
25
+ ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
26
+ ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
27
+ ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
28
  ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
29
+ ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
30
+ ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
+ ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
32
+ ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
 
 
 
33
  ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
34
+ ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
35
+ ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
36
+ ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
37
+ ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
38
+ ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
39
+ ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
40
+ # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
41
  ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
42
+ ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
43
+ ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{M-1.3B}"),
44
+ ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{M-30B}"),
45
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
experiments/baseline_lm_qa_fewshot.py CHANGED
@@ -26,9 +26,9 @@ for shots in shots_num:
26
 
27
  full_result = []
28
  for lm, ppl_class, batch, pretty_name in [
29
- ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
30
  # ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
31
- # ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
32
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
33
  ]:
34
  scorer = None
 
26
 
27
  full_result = []
28
  for lm, ppl_class, batch, pretty_name in [
29
+ # ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
30
  # ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
31
+ ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
32
  ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
33
  ]:
34
  scorer = None
experiments/results/lm_lc/lm.csv CHANGED
@@ -1,24 +1,24 @@
1
  model,competitor/rival of,friend/ally of,influenced by,known for,similar to,average
2
- Flan-UL2,0.6605035317658581,0.35791417582293494,0.5329592730844052,0.5617353599147163,0.4369621165115711,0.5100148914198971
3
- Flan-T5 extsubscript{XXL},0.6558600331708642,0.39097532739732255,0.5137148714722951,0.48498322027473,0.46526989625821613,0.5021606697146856
4
- Flan-T5 extsubscript{XL},0.4948996416160854,0.2585068655322593,0.40334740581651923,0.3234891964665975,0.38715447342514303,0.3734795165713209
5
- Flan-T5 extsubscript{LARGE},0.500097970006437,0.2791015777434352,0.41810593292697185,0.3014720569753186,0.2944442528504654,0.3586443581005256
6
- Flan-T5 extsubscript{BASE},0.4566419932654189,0.3899872752372662,0.3459207357378026,0.23634179781685494,0.10649793272688465,0.3070779469568455
7
  Flan-T5 extsubscript{SMALL},0.47676097522939054,0.40833571261581375,0.30934590563428976,0.22436672671700258,0.16942071664102182,0.3176460073675037
8
- T5 extsubscript{XXL},0.3078963930515155,0.10340583387590391,0.2646516426827772,0.21968933744723163,0.168830348478407,0.212894711107167
9
- T5 extsubscript{XL},0.5446721421811761,0.36070079168059405,0.5455346746040511,0.38386092796999827,0.3385425126933779,0.43466220982583953
10
- T5 extsubscript{LARGE},0.36104055160378007,0.16276615505429307,0.3156410828516156,0.174686170687364,0.29006506622651235,0.260839805284713
11
- T5 extsubscript{BASE},0.4484817273521575,0.4231564950166599,0.4386362852295569,0.25739482237701783,0.22215778149637408,0.35796542229435324
 
12
  T5 extsubscript{SMALL},0.31788332936795455,0.4067532853282234,0.3070207273509307,0.17679576870495456,0.19644313785640424,0.2809792497216935
13
- OPT extsubscript{30B},0.6813139170132756,0.3770885630540297,0.5854813870413097,0.6989690065205573,0.5716333147202012,0.5828972376698747
14
- OPT extsubscript{13B},0.7212445905930207,0.4058964588456745,0.5814366235323154,0.7037084427908455,0.5978337043167529,0.6020239640157218
15
- OPT extsubscript{6.7B},0.7080054980914848,0.42069408377401935,0.5996118917215304,0.6223886893435421,0.5280282738485872,0.5757456873558329
16
- OPT extsubscript{2.7B},0.6617839082166836,0.4307367076820927,0.5980792179334641,0.588005105364532,0.4801860336326363,0.5517581945658818
17
- OPT extsubscript{1.3B},0.6174316679600876,0.3921023243923869,0.5616838228100176,0.48487821765846983,0.47457379958043716,0.5061339664802799
18
- OPT extsubscript{350M},0.48169469248657154,0.3571499792303913,0.5061636493945053,0.40226502289268884,0.272974281569549,0.40404952511474124
19
  OPT extsubscript{125M},0.48600529320435076,0.409285168988368,0.5499158787006698,0.2905279206532933,0.22503489216228176,0.3921538307417927
20
- OPT-IML extsubscript{30B},0.6440378906082419,0.3558763182428186,0.5676350829822163,0.6966494032704463,0.5200321481017788,0.5568461686411004
 
 
 
 
 
21
  OPT-IML extsubscript{1.3B},0.6061643551928231,0.39118374464983446,0.5777955887284701,0.5394270768056251,0.4168298148649338,0.5062801160483372
22
- OPT-IML extsubscript{MAX-30B},0.6125833091329617,0.3685743323310436,0.5747227646948349,0.6765032194870758,0.5111168415448232,0.5487000934381479
23
  OPT-IML extsubscript{MAX-1.3B},0.5909364112710048,0.3755292932389407,0.590692477920735,0.5158492166090246,0.40518685793640347,0.49563885139522174
 
24
  GPT-3 extsubscript{davinci},0.70571789216601,0.3956531368425896,0.6475957959742583,0.7399152540158276,0.5197407005278296,0.6017245559053029
 
1
  model,competitor/rival of,friend/ally of,influenced by,known for,similar to,average
 
 
 
 
 
2
  Flan-T5 extsubscript{SMALL},0.47676097522939054,0.40833571261581375,0.30934590563428976,0.22436672671700258,0.16942071664102182,0.3176460073675037
3
+ Flan-T5 extsubscript{BASE},0.4566419932654189,0.3899872752372662,0.3459207357378026,0.23634179781685494,0.10649793272688465,0.3070779469568455
4
+ Flan-T5 extsubscript{LARGE},0.500097970006437,0.2791015777434352,0.41810593292697185,0.3014720569753186,0.2944442528504654,0.3586443581005256
5
+ Flan-T5 extsubscript{XL},0.4948996416160854,0.2585068655322593,0.40334740581651923,0.3234891964665975,0.38715447342514303,0.3734795165713209
6
+ Flan-T5 extsubscript{XXL},0.6558600331708642,0.39097532739732255,0.5137148714722951,0.48498322027473,0.46526989625821613,0.5021606697146856
7
+ Flan-UL2,0.6605035317658581,0.35791417582293494,0.5329592730844052,0.5617353599147163,0.4369621165115711,0.5100148914198971
8
  T5 extsubscript{SMALL},0.31788332936795455,0.4067532853282234,0.3070207273509307,0.17679576870495456,0.19644313785640424,0.2809792497216935
9
+ T5 extsubscript{BASE},0.4484817273521575,0.4231564950166599,0.4386362852295569,0.25739482237701783,0.22215778149637408,0.35796542229435324
10
+ T5 extsubscript{LARGE},0.36104055160378007,0.16276615505429307,0.3156410828516156,0.174686170687364,0.29006506622651235,0.260839805284713
11
+ T5 extsubscript{XL},0.5446721421811761,0.36070079168059405,0.5455346746040511,0.38386092796999827,0.3385425126933779,0.43466220982583953
12
+ T5 extsubscript{XXL},0.3078963930515155,0.10340583387590391,0.2646516426827772,0.21968933744723163,0.168830348478407,0.212894711107167
 
 
13
  OPT extsubscript{125M},0.48600529320435076,0.409285168988368,0.5499158787006698,0.2905279206532933,0.22503489216228176,0.3921538307417927
14
+ OPT extsubscript{350M},0.48169469248657154,0.3571499792303913,0.5061636493945053,0.40226502289268884,0.272974281569549,0.40404952511474124
15
+ OPT extsubscript{1.3B},0.6174316679600876,0.3921023243923869,0.5616838228100176,0.48487821765846983,0.47457379958043716,0.5061339664802799
16
+ OPT extsubscript{2.7B},0.6617839082166836,0.4307367076820927,0.5980792179334641,0.588005105364532,0.4801860336326363,0.5517581945658818
17
+ OPT extsubscript{6.7B},0.7080054980914848,0.42069408377401935,0.5996118917215304,0.6223886893435421,0.5280282738485872,0.5757456873558329
18
+ OPT extsubscript{13B},0.7212445905930207,0.4058964588456745,0.5814366235323154,0.7037084427908455,0.5978337043167529,0.6020239640157218
19
+ OPT extsubscript{30B},0.6813139170132756,0.3770885630540297,0.5854813870413097,0.6989690065205573,0.5716333147202012,0.5828972376698747
20
  OPT-IML extsubscript{1.3B},0.6061643551928231,0.39118374464983446,0.5777955887284701,0.5394270768056251,0.4168298148649338,0.5062801160483372
21
+ OPT-IML extsubscript{30B},0.6440378906082419,0.3558763182428186,0.5676350829822163,0.6966494032704463,0.5200321481017788,0.5568461686411004
22
  OPT-IML extsubscript{MAX-1.3B},0.5909364112710048,0.3755292932389407,0.590692477920735,0.5158492166090246,0.40518685793640347,0.49563885139522174
23
+ OPT-IML extsubscript{MAX-30B},0.6125833091329617,0.3685743323310436,0.5747227646948349,0.6765032194870758,0.5111168415448232,0.5487000934381479
24
  GPT-3 extsubscript{davinci},0.70571789216601,0.3956531368425896,0.6475957959742583,0.7399152540158276,0.5197407005278296,0.6017245559053029
experiments/results/lm_qa/lm.csv CHANGED
@@ -1,24 +1,24 @@
1
  model,competitor/rival of,friend/ally of,influenced by,known for,similar to,average
2
- Flan-UL2,0.8139011664177609,0.5668563310448644,0.5182231753464608,0.6982912623610599,0.6226590592054422,0.6439861988751175
3
- Flan-T5 extsubscript{XXL},0.7759252008862759,0.6082696110347289,0.4862164607771357,0.7200172582345266,0.6973966793865924,0.6575650420638519
4
- Flan-T5 extsubscript{XL},0.7861767483358856,0.5003943849660698,0.4883173453354119,0.6349030920632762,0.6740659274412318,0.6167714996283751
5
- Flan-T5 extsubscript{LARGE},0.7161401564757297,0.4571362263336,0.3097571107969417,0.5286213530232154,0.6074813663159394,0.5238272425890853
6
- Flan-T5 extsubscript{BASE},0.5034269487785833,0.36490001336083383,0.5049076045340413,0.2302182361504099,0.3121104596406103,0.3831126524928957
7
  Flan-T5 extsubscript{SMALL},0.41059965609373317,0.10640086698607491,0.2820643122067104,0.04446383513998588,0.17695351547539834,0.20409643718038054
8
- T5 extsubscript{XXL},0.025803853405636974,-0.06345919381112318,-0.023476076558673384,0.11729746805499064,-0.13017244334921085,-0.014801278451675962
9
- T5 extsubscript{XL},-0.00413988385766918,0.16291281904680144,-0.08980720752317983,0.16149879665432612,-0.19343151292559696,0.007406602278936319
10
- T5 extsubscript{LARGE},-0.030600997174729923,0.09892100336814785,-0.1485721634948909,-0.19286116899275968,0.037125937112284256,-0.04719747783638968
11
- T5 extsubscript{BASE},-0.013529311163722992,-0.11311653401145834,-0.007543745620287084,-0.1494091772458263,0.15490064904658374,-0.02573962379894219
 
12
  T5 extsubscript{SMALL},0.14713232588586322,-0.14745134657341868,0.21085105449290023,0.0024771071745011454,0.053006093385151415,0.05320304687299946
13
- OPT extsubscript{30B},0.5971334332930004,0.37923448883915223,0.5059991673294445,0.638926601404518,0.5040249505787286,0.5250637282889687
14
- OPT extsubscript{13B},0.6196680588275295,0.37709628221153013,0.4580302159917221,0.6335476037442813,0.48698647702478176,0.5150657275599689
15
- OPT extsubscript{6.7B},0.5604634517413575,0.32831892596624523,0.4269879644402534,0.49748807730207684,0.40472353102397157,0.4435963900947809
16
- OPT extsubscript{2.7B},0.5717222286656166,0.3371033272017468,0.5281967696551456,0.4209793528179663,0.3906219522536655,0.44972472611882824
17
- OPT extsubscript{1.3B},0.4868332699758846,0.33257990090648853,0.48834725116542294,0.338356612359798,0.38402328025886945,0.40602806293329274
18
- OPT extsubscript{350M},0.4394508054523349,0.3818975981768043,0.4192647838399,0.2634802012739137,0.2726155768631501,0.35534179312122055
19
  OPT extsubscript{125M},0.44059460841507236,0.35041115473250656,0.5006310708424613,0.16778463509135502,0.18441905717732507,0.32876810525174405
20
- OPT-IML extsubscript{30B},0.5508094133021331,0.3508511467100317,0.3788470545799674,0.555669072402595,0.4178909829546972,0.4508135339898849
 
 
 
 
 
21
  OPT-IML extsubscript{1.3B},0.4877807485494955,0.2937602578367721,0.45971989538734637,0.2690262485509278,0.3385350396786613,0.3697644380006406
22
- OPT-IML extsubscript{MAX-30B},0.5590721093314605,0.34693753385730824,0.42109651592807673,0.467013454355661,0.48242793804762935,0.4553095103040272
23
- OPT-IML extsubscript{MAX-1.3B},0.4887452988091174,0.2824902878861287,0.42677862363017605,0.22738132064323313,0.3703999744304286,0.3591591010798168
 
24
  GPT-3 extsubscript{davinci},0.6817407091635507,0.38019166436920687,0.5366302137182614,0.6383443141688934,0.4213061506802032,0.5316426104200231
 
1
  model,competitor/rival of,friend/ally of,influenced by,known for,similar to,average
 
 
 
 
 
2
  Flan-T5 extsubscript{SMALL},0.41059965609373317,0.10640086698607491,0.2820643122067104,0.04446383513998588,0.17695351547539834,0.20409643718038054
3
+ Flan-T5 extsubscript{BASE},0.5034269487785833,0.36490001336083383,0.5049076045340413,0.2302182361504099,0.3121104596406103,0.3831126524928957
4
+ Flan-T5 extsubscript{LARGE},0.7161401564757297,0.4571362263336,0.3097571107969417,0.5286213530232154,0.6074813663159394,0.5238272425890853
5
+ Flan-T5 extsubscript{XL},0.7861767483358856,0.5003943849660698,0.4883173453354119,0.6349030920632762,0.6740659274412318,0.6167714996283751
6
+ Flan-T5 extsubscript{XXL},0.7759252008862759,0.6082696110347289,0.4862164607771357,0.7200172582345266,0.6973966793865924,0.6575650420638519
7
+ Flan-UL2,0.8139011664177609,0.5668563310448644,0.5182231753464608,0.6982912623610599,0.6226590592054422,0.6439861988751175
8
  T5 extsubscript{SMALL},0.14713232588586322,-0.14745134657341868,0.21085105449290023,0.0024771071745011454,0.053006093385151415,0.05320304687299946
9
+ T5 extsubscript{BASE},-0.013529311163722992,-0.11311653401145834,-0.007543745620287084,-0.1494091772458263,0.15490064904658374,-0.02573962379894219
10
+ T5 extsubscript{LARGE},-0.030600997174729923,0.09892100336814785,-0.1485721634948909,-0.19286116899275968,0.037125937112284256,-0.04719747783638968
11
+ T5 extsubscript{XL},-0.00413988385766918,0.16291281904680144,-0.08980720752317983,0.16149879665432612,-0.19343151292559696,0.007406602278936319
12
+ T5 extsubscript{XXL},0.025803853405636974,-0.06345919381112318,-0.023476076558673384,0.11729746805499064,-0.13017244334921085,-0.014801278451675962
 
 
13
  OPT extsubscript{125M},0.44059460841507236,0.35041115473250656,0.5006310708424613,0.16778463509135502,0.18441905717732507,0.32876810525174405
14
+ OPT extsubscript{350M},0.4394508054523349,0.3818975981768043,0.4192647838399,0.2634802012739137,0.2726155768631501,0.35534179312122055
15
+ OPT extsubscript{1.3B},0.4868332699758846,0.33257990090648853,0.48834725116542294,0.338356612359798,0.38402328025886945,0.40602806293329274
16
+ OPT extsubscript{2.7B},0.5717222286656166,0.3371033272017468,0.5281967696551456,0.4209793528179663,0.3906219522536655,0.44972472611882824
17
+ OPT extsubscript{6.7B},0.5604634517413575,0.32831892596624523,0.4269879644402534,0.49748807730207684,0.40472353102397157,0.4435963900947809
18
+ OPT extsubscript{13B},0.6196680588275295,0.37709628221153013,0.4580302159917221,0.6335476037442813,0.48698647702478176,0.5150657275599689
19
+ OPT extsubscript{30B},0.5971334332930004,0.37923448883915223,0.5059991673294445,0.638926601404518,0.5040249505787286,0.5250637282889687
20
  OPT-IML extsubscript{1.3B},0.4877807485494955,0.2937602578367721,0.45971989538734637,0.2690262485509278,0.3385350396786613,0.3697644380006406
21
+ OPT-IML extsubscript{30B},0.5508094133021331,0.3508511467100317,0.3788470545799674,0.555669072402595,0.4178909829546972,0.4508135339898849
22
+ OPT-IML extsubscript{M-1.3B},0.4887452988091174,0.2824902878861287,0.42677862363017605,0.22738132064323313,0.3703999744304286,0.3591591010798168
23
+ OPT-IML extsubscript{M-30B},0.5590721093314605,0.34693753385730824,0.42109651592807673,0.467013454355661,0.48242793804762935,0.4553095103040272
24
  GPT-3 extsubscript{davinci},0.6817407091635507,0.38019166436920687,0.5366302137182614,0.6383443141688934,0.4213061506802032,0.5316426104200231