init
Browse files
experiments/baseline_lm_lc.py
CHANGED
@@ -94,7 +94,7 @@ print(df)
|
|
94 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
95 |
df = df.T[models].T
|
96 |
df['average'] = df.mean(1)
|
97 |
-
df.to_csv("
|
98 |
df = (100 * df).round()
|
99 |
print(df.to_markdown())
|
100 |
print(df.to_latex(escape=False))
|
|
|
94 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
95 |
df = df.T[models].T
|
96 |
df['average'] = df.mean(1)
|
97 |
+
df.to_csv("results/lm_lc/lm.csv")
|
98 |
df = (100 * df).round()
|
99 |
print(df.to_markdown())
|
100 |
print(df.to_latex(escape=False))
|
experiments/baseline_lm_qa.py
CHANGED
@@ -91,7 +91,7 @@ models = df['model'].unique()
|
|
91 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
92 |
df = df.T[models].T
|
93 |
df['average'] = df.mean(1)
|
94 |
-
df.to_csv("
|
95 |
df = (100 * df).round()
|
96 |
print(df.to_markdown())
|
97 |
print(df.to_latex(escape=False))
|
|
|
91 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
92 |
df = df.T[models].T
|
93 |
df['average'] = df.mean(1)
|
94 |
+
df.to_csv("results/lm_qa/lm.csv")
|
95 |
df = (100 * df).round()
|
96 |
print(df.to_markdown())
|
97 |
print(df.to_latex(escape=False))
|
experiments/baseline_oracle.py
CHANGED
@@ -27,4 +27,4 @@ df = df.T
|
|
27 |
df['average'] = df.mean(axis=1).round(1)
|
28 |
print(df.to_markdown())
|
29 |
print(df.to_latex())
|
30 |
-
df.to_csv("
|
|
|
27 |
df['average'] = df.mean(axis=1).round(1)
|
28 |
print(df.to_markdown())
|
29 |
print(df.to_latex())
|
30 |
+
df.to_csv("results/oracle.csv")
|
experiments/baseline_relbert.py
CHANGED
@@ -17,7 +17,7 @@ data = load_dataset("cardiffnlp/relentless", split="test")
|
|
17 |
full_result = []
|
18 |
|
19 |
for lm in ['base', 'large']:
|
20 |
-
os.makedirs(f"
|
21 |
scorer = None
|
22 |
for d in data:
|
23 |
ppl_file = f"experiments/results/relbert/relbert-roberta-{lm}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
@@ -61,7 +61,7 @@ for lm in ['base', 'large']:
|
|
61 |
df = pd.DataFrame(full_result)
|
62 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
63 |
df['average'] = df.mean(1)
|
64 |
-
df.to_csv("
|
65 |
df = (100 * df).round()
|
66 |
print(df.to_markdown())
|
67 |
print(df.to_latex())
|
|
|
17 |
full_result = []
|
18 |
|
19 |
for lm in ['base', 'large']:
|
20 |
+
os.makedirs(f"results/relbert/relbert-roberta-{lm}", exist_ok=True)
|
21 |
scorer = None
|
22 |
for d in data:
|
23 |
ppl_file = f"experiments/results/relbert/relbert-roberta-{lm}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
|
|
61 |
df = pd.DataFrame(full_result)
|
62 |
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
63 |
df['average'] = df.mean(1)
|
64 |
+
df.to_csv("results/relbert/relbert.csv")
|
65 |
df = (100 * df).round()
|
66 |
print(df.to_markdown())
|
67 |
print(df.to_latex())
|
experiments/baseline_relbert_misc.py
DELETED
@@ -1,67 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import json
|
3 |
-
import pandas as pd
|
4 |
-
from statistics import mean
|
5 |
-
from datasets import load_dataset
|
6 |
-
from relbert import RelBERT
|
7 |
-
|
8 |
-
|
9 |
-
def cosine_similarity(a, b):
|
10 |
-
norm_a = sum(map(lambda x: x * x, a)) ** 0.5
|
11 |
-
norm_b = sum(map(lambda x: x * x, b)) ** 0.5
|
12 |
-
return sum(map(lambda x: x[0] * x[1], zip(a, b))) / (norm_a * norm_b)
|
13 |
-
|
14 |
-
|
15 |
-
# load dataset
|
16 |
-
data = load_dataset("cardiffnlp/relentless_full", split="test")
|
17 |
-
full_result = []
|
18 |
-
|
19 |
-
for lm in ['relbert-roberta-base-nce-t-rex', 'relbert-roberta-base-nce-nell']:
|
20 |
-
os.makedirs(f"./experiments/results/relbert/{lm}", exist_ok=True)
|
21 |
-
scorer = None
|
22 |
-
for d in data:
|
23 |
-
ppl_file = f"experiments/results/relbert/{lm}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl"
|
24 |
-
anchor_embeddings = [(a, b) for a, b in d['positive_examples']]
|
25 |
-
option_embeddings = [(x, y) for x, y in d['pairs']]
|
26 |
-
|
27 |
-
if not os.path.exists(ppl_file):
|
28 |
-
|
29 |
-
if scorer is None:
|
30 |
-
scorer = RelBERT(f"relbert/{lm}")
|
31 |
-
anchor_embeddings = scorer.get_embedding(d['positive_examples'])
|
32 |
-
option_embeddings = scorer.get_embedding(d['pairs'], batch_size=64)
|
33 |
-
similarity = [[cosine_similarity(a, b) for b in anchor_embeddings] for a in option_embeddings]
|
34 |
-
output = [{"similarity": s} for s in similarity]
|
35 |
-
with open(ppl_file, "w") as f:
|
36 |
-
f.write("\n".join([json.dumps(i) for i in output]))
|
37 |
-
|
38 |
-
with open(ppl_file) as f:
|
39 |
-
similarity = [json.loads(i)['similarity'] for i in f.read().split("\n") if len(i) > 0]
|
40 |
-
|
41 |
-
true_rank = d['ranks']
|
42 |
-
assert len(true_rank) == len(similarity), f"Mismatch in number of examples: {len(true_rank)} vs {len(similarity)}"
|
43 |
-
prediction = [max(s) for s in similarity]
|
44 |
-
rank_map = {p: n for n, p in enumerate(sorted(prediction, reverse=True), 1)}
|
45 |
-
prediction_max = [rank_map[p] for p in prediction]
|
46 |
-
|
47 |
-
prediction = [min(s) for s in similarity]
|
48 |
-
rank_map = {p: n for n, p in enumerate(sorted(prediction, reverse=True), 1)}
|
49 |
-
prediction_min = [rank_map[p] for p in prediction]
|
50 |
-
|
51 |
-
prediction = [mean(s) for s in similarity]
|
52 |
-
rank_map = {p: n for n, p in enumerate(sorted(prediction, reverse=True), 1)}
|
53 |
-
prediction_mean = [rank_map[p] for p in prediction]
|
54 |
-
|
55 |
-
tmp = pd.DataFrame([true_rank, prediction_max, prediction_min, prediction_mean]).T
|
56 |
-
cor_max = tmp.corr("spearman").values[0, 1]
|
57 |
-
cor_min = tmp.corr("spearman").values[0, 2]
|
58 |
-
cor_mean = tmp.corr("spearman").values[0, 3]
|
59 |
-
full_result.append({"model": f"RelBERT\textsubscript{'{'}{lm.upper()}{'}'}", "relation_type": d['relation_type'], "correlation": cor_max})
|
60 |
-
|
61 |
-
df = pd.DataFrame(full_result)
|
62 |
-
df = df.pivot(columns="relation_type", index="model", values="correlation")
|
63 |
-
df['average'] = df.mean(1)
|
64 |
-
df.to_csv("experiments/results/relbert/relbert_misc.csv")
|
65 |
-
df = (100 * df).round()
|
66 |
-
print(df.to_markdown())
|
67 |
-
print(df.to_latex())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
experiments/results/oracle.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,competitor/rival of,friend/ally of,influenced by,known for,similar to,average
|
2 |
+
Avg.\ of others,0.7743314787749431,0.7854235774817461,0.7150896845459409,0.8236406723889734,0.8064321816808586,0.8
|