Datasets:

Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
asahi417 commited on
Commit
b94a8cf
1 Parent(s): 67a4fb1
experiments/baseline_gpt4.py CHANGED
@@ -4,9 +4,9 @@ import pandas as pd
4
  import openai
5
  from datasets import load_dataset
6
 
7
- data = load_dataset("cardiffnlp/relentless_full", split="test")
8
  openai.api_key = os.getenv("OPENAI_API_KEY", None)
9
- pretty_name = {"is competitor/rival of": "Rival", "is friend/ally of": "Ally", "is influenced by": "Inf", "is known for": "Know", "is similar to": "Sim"}
10
  pretty_model = {"gpt-3.5-turbo": "GPT-3.5", "gpt-4": "GPT-4"}
11
 
12
 
@@ -22,16 +22,16 @@ def get_reply(model, text):
22
 
23
 
24
  prompt_dict = {
25
- "is friend/ally of": "entities that are friends or allies",
26
- "is competitor/rival of": "entities that are competitors or rivals",
27
- "is known for": "what entities are known for",
28
- "is influenced by": "what has influenced different entities",
29
- "is similar to": "entities that are similar"
30
  }
31
 
32
 
33
  def get_prompt(_data):
34
- ref = "\n".join([str(_i) for _i in _data["positive_examples"]])
35
  prefix = f'Consider the following reference list of {prompt_dict[_data["relation_type"]]}, \n{ref}\n' \
36
  f'Now sort the entity pairs from the following list based on the extent to which they also represent ' \
37
  f'{prompt_dict[_data["relation_type"]]} in descending order. Do not include the pairs from the reference list. ' \
@@ -41,14 +41,14 @@ def get_prompt(_data):
41
 
42
 
43
  if __name__ == '__main__':
44
- os.makedirs('experiments/results/chat', exist_ok=True)
45
 
46
  full_result = []
47
  valid_count = []
48
  for target_model in ['gpt-3.5-turbo', 'gpt-4']:
49
 
50
  for d in data:
51
- output_file = f"experiments/results/chat/{target_model}.{d['relation_type'].replace(' ', '_').replace('/', '-')}.json"
52
  if not os.path.exists(output_file):
53
  print(target_model, d['relation_type'])
54
  i = get_prompt(d)
@@ -96,5 +96,5 @@ if __name__ == '__main__':
96
  df.index = [pretty_model[m] for m in df.index]
97
  print(df.to_latex())
98
  df = df.T
99
- # df.to_csv("experiments/results/chat/chat.csv")
100
 
 
4
  import openai
5
  from datasets import load_dataset
6
 
7
+ data = load_dataset("cardiffnlp/relentless", split="test")
8
  openai.api_key = os.getenv("OPENAI_API_KEY", None)
9
+ pretty_name = {"competitor/rival of": "Rival", "friend/ally of": "Ally", "influenced by": "Inf", "known for": "Know", "similar to": "Sim"}
10
  pretty_model = {"gpt-3.5-turbo": "GPT-3.5", "gpt-4": "GPT-4"}
11
 
12
 
 
22
 
23
 
24
  prompt_dict = {
25
+ "friend/ally of": "entities that are friends or allies",
26
+ "competitor/rival of": "entities that are competitors or rivals",
27
+ "known for": "what entities are known for",
28
+ "influenced by": "what has influenced different entities",
29
+ "similar to": "entities that are similar"
30
  }
31
 
32
 
33
  def get_prompt(_data):
34
+ ref = "\n".join([str(_i) for _i in _data["prototypical_examples"]])
35
  prefix = f'Consider the following reference list of {prompt_dict[_data["relation_type"]]}, \n{ref}\n' \
36
  f'Now sort the entity pairs from the following list based on the extent to which they also represent ' \
37
  f'{prompt_dict[_data["relation_type"]]} in descending order. Do not include the pairs from the reference list. ' \
 
41
 
42
 
43
  if __name__ == '__main__':
44
+ os.makedirs('results/chat', exist_ok=True)
45
 
46
  full_result = []
47
  valid_count = []
48
  for target_model in ['gpt-3.5-turbo', 'gpt-4']:
49
 
50
  for d in data:
51
+ output_file = f"results/chat/{target_model}.{d['relation_type'].replace(' ', '_').replace('/', '-')}.json"
52
  if not os.path.exists(output_file):
53
  print(target_model, d['relation_type'])
54
  i = get_prompt(d)
 
96
  df.index = [pretty_model[m] for m in df.index]
97
  print(df.to_latex())
98
  df = df.T
99
+ # df.to_csv("results/chat/chat.csv")
100
 
experiments/baseline_lm_lc.py CHANGED
@@ -10,11 +10,11 @@ from lmppl import EncoderDecoderLM, LM, OpenAI
10
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)
11
 
12
  prompt_dict = {
13
- "is friend/ally of": "Complete the following list with examples of entities that are friends or allies",
14
- "is competitor/rival of": "Complete the following list with examples of entities that are competitors or rivals",
15
- "is known for": "Complete the following list with examples of what entities are known for",
16
- "is influenced by": "Complete the following list with examples of what has influenced different entities",
17
- "is similar to": "Complete the following list with examples of entities that are similar"
18
  }
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
 
10
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)
11
 
12
  prompt_dict = {
13
+ "friend/ally of": "Complete the following list with examples of entities that are friends or allies",
14
+ "competitor/rival of": "Complete the following list with examples of entities that are competitors or rivals",
15
+ "known for": "Complete the following list with examples of what entities are known for",
16
+ "influenced by": "Complete the following list with examples of what has influenced different entities",
17
+ "similar to": "Complete the following list with examples of entities that are similar"
18
  }
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
experiments/baseline_lm_qa.py CHANGED
@@ -10,39 +10,39 @@ from lmppl import EncoderDecoderLM, LM, OpenAI
10
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)
11
 
12
  prompt_dict = {
13
- "is friend/ally of": "entities that are friends or allies",
14
- "is competitor/rival of": "entities that are competitors or rivals",
15
- "is known for": "examples of what entities are known for",
16
- "is influenced by": "what has influenced different entities",
17
- "is similar to": "examples of entities that are similar"
18
  }
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
22
- ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
23
- ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
24
- ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
25
- ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
26
- ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
27
- ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
28
- ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
29
- ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
30
- ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
- ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
32
- ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
33
- # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
34
- ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
35
- ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
36
- ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
37
- ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
38
- ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
39
- ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
40
- ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
41
- ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
42
- ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
43
- ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
44
- ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
45
- # ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
48
  scorer = None
 
10
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY", None)
11
 
12
  prompt_dict = {
13
+ "friend/ally of": "entities that are friends or allies",
14
+ "competitor/rival of": "entities that are competitors or rivals",
15
+ "known for": "examples of what entities are known for",
16
+ "influenced by": "what has influenced different entities",
17
+ "similar to": "examples of entities that are similar"
18
  }
19
  data = load_dataset("cardiffnlp/relentless", split="test")
20
  full_result = []
21
  for lm, ppl_class, batch, pretty_name in [
22
+ # ("google/flan-ul2", EncoderDecoderLM, 1, "Flan-UL2"),
23
+ # ("google/flan-t5-xxl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XXL}"),
24
+ # ("google/flan-t5-xl", EncoderDecoderLM, 1, "Flan-T5\textsubscript{XL}"),
25
+ # ("google/flan-t5-large", EncoderDecoderLM, 32, "Flan-T5\textsubscript{LARGE}"),
26
+ # ("google/flan-t5-base", EncoderDecoderLM, 128, "Flan-T5\textsubscript{BASE}"),
27
+ # ("google/flan-t5-small", EncoderDecoderLM, 256, "Flan-T5\textsubscript{SMALL}"),
28
+ # ("t5-11b", EncoderDecoderLM, 1, "T5\textsubscript{XXL}"),
29
+ # ("t5-3b", EncoderDecoderLM, 1, "T5\textsubscript{XL}"),
30
+ # ("t5-large", EncoderDecoderLM, 32, "T5\textsubscript{LARGE}"),
31
+ # ("t5-base", EncoderDecoderLM, 128, "T5\textsubscript{BASE}"),
32
+ # ("t5-small", EncoderDecoderLM, 256, "T5\textsubscript{SMALL}"),
33
+ # # ("facebook/opt-66b", LM, 1, "OPT\textsubscript{66B}"),
34
+ # ("facebook/opt-30b", LM, 1, "OPT\textsubscript{30B}"),
35
+ # ("facebook/opt-13b", LM, 1, "OPT\textsubscript{13B}"),
36
+ # ("facebook/opt-6.7b", LM, 1, "OPT\textsubscript{6.7B}"),
37
+ # ("facebook/opt-2.7b", LM, 1, "OPT\textsubscript{2.7B}"),
38
+ # ("facebook/opt-1.3b", LM, 1, "OPT\textsubscript{1.3B}"),
39
+ # ("facebook/opt-350m", LM, 128, "OPT\textsubscript{350M}"),
40
+ # ("facebook/opt-125m", LM, 256, "OPT\textsubscript{125M}"),
41
+ # ("facebook/opt-iml-30b", LM, 1, "OPT-IML\textsubscript{30B}"),
42
+ # ("facebook/opt-iml-1.3b", LM, 1, "OPT-IML\textsubscript{1.3B}"),
43
+ # ("facebook/opt-iml-max-30b", LM, 1, "OPT-IML\textsubscript{MAX-30B}"),
44
+ # ("facebook/opt-iml-max-1.3b", LM, 1, "OPT-IML\textsubscript{MAX-1.3B}"),
45
+ ("davinci", OpenAI, None, "GPT-3\textsubscript{davinci}")
46
  ]:
47
  os.makedirs(f"results/lm_qa/{os.path.basename(lm)}", exist_ok=True)
48
  scorer = None
experiments/results/chat/gpt-3.5-turbo.competitor-rival_of.json ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1. Liverpool FC - Manchester United
2
+ 2. Apple - Microsoft
3
+ 3. Microsoft - Google
4
+ 4. Netflix - Disney Plus
5
+ 5. PyTorch - TensorFlow
6
+ 6. Razer - Dell
7
+ 7. Spotify - Apple
8
+ 8. Manchester United - Arsenal
9
+ 9. Saudi Arabia - Israel
10
+ 10. Coca-Cola Company - Pepsi
11
+ 11. Twitter - Facebook
12
+ 12. Arsenal - Tottenham Hotspur
13
+ 13. Nintendo - Xbox
14
+ 14. Liverpool FC - Manchester City
15
+ 15. Nike - Adidas
16
+ 16. Manchester City - Manchester United
17
+ 17. Amazon - Ebay
18
+ 18. McDonald's - Burger King
19
+ 19. Sprite - 7 Up
experiments/results/chat/gpt-3.5-turbo.friend-ally_of.json ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1. ['Australia', 'New Zealand']
2
+ 2. ['Aznar', 'Bush']
3
+ 3. ['Extinction Rebellion', 'Greta Thunberg']
4
+ 4. ['Elsa', 'Anna']
5
+ 5. ['CIA', 'MI6']
6
+ 6. ['UK', 'Commonwealth']
7
+ 7. ['Singapore', 'Israel']
8
+ 8. ['India', 'US']
9
+ 9. ['US', 'Canada']
10
+ 10. ['UN', 'NATO']
11
+ 11. ['Germany', 'France']
12
+ 12. ['Spain', 'Portugal']
13
+ 13. ['France', 'Belgium']
14
+ 14. ['Malaysia', 'Singapore']
15
+ 15. ['Islamic State', 'Denys Prokopenko']
16
+ 16. ['China', 'North Korea']
17
+ 17. ['Armenia', 'Azerbaijan']
18
+ 18. ['Russia', 'Georgia']
19
+ 19. ['Japan', 'Taiwan']
20
+ 20. ['South Korea', 'Japan']
21
+ 21. ['UK', 'Ireland']
22
+ 22. ['Turkey', 'All Nippon Airways']
23
+ 23. ['Pedro Sánchez', 'Pablo Iglesias']
24
+ 24. ['Hillary Clinton', 'Barack Obama']
25
+ 25. ['Rishi Sunak', 'Leo Varadkar']
26
+ 26. ['Boris Johnson', 'Emmanuel Macron']
27
+ 27. ['Di Maio', 'Salvini']
28
+ 28. ['Brazil', 'India']
29
+ 29. ['Kylo Ren', 'Rey']
30
+ 30. ['Keir Starmer', 'Jeremy Corbyn']
31
+ 31. ['Margaret Thatcher', 'Ronald Reagan']
32
+ 32. ['Singapore', 'Malaysia'] (Removing duplicate)
33
+ 33. ['UK', 'Australia'] (Removing duplicate)
34
+ 34. ['Cersei Lannister', 'Euron Greyjoy']
35
+ 35. ['FTX', 'Alameda Research']
36
+ 36. ['Sophia Loren', 'Marlon Brando']
37
+ 37. ['Paul Rudd', 'Memento']
38
+ 38. ['Jean-Michel Basquiat', 'Andy Warhol']
39
+ 39. ['India', 'Brazil']
40
+ 40. ['Nikon', 'Tokina']
41
+ 41. ['Google', 'Samsung']
42
+ 42. ['IMF', 'The World Bank']
43
+ 43. ['Instagram', 'WhatsApp']
44
+ 44. ['Windows', 'Xbox']
45
+ 45. ['Johnny Cash', 'Waylon Jennings']
46
+ 46. ['Oman', 'Iran']
47
+ 47. ['China', 'Huawei']
48
+ 48. ['Amazon', 'Royal Mail']
49
+ 49. ['Red Bull', 'GoPro']
50
+ 50. ['HSBC', 'BlackRock']
51
+ 51. ['Tata Motors', 'Jaguar']
52
+ 52. ['KGB', 'CIA']
53
+ 53. ['JP Morgan', 'Morgan Stanley']
54
+ 54. ['Eva Perón', 'Interpol']
55
+ 55. ['Eastern Orthodoxy', 'Oriental Orthodoxy']
56
+ 56. ['Darth Vader', 'Emperor Palpatine']
57
+ 57. ['Doja Cat', 'Anthony Albanese']
58
+ 58. ['Thomas Jefferson', 'Kid Cudi']
59
+ 59. ['Liam Gallagher', 'Noel Gallagher']
60
+ 60. ['Quentin Tarantino', 'Edgar Wright']
61
+ 61. ['Rishi Sunak', 'Joe Biden']
62
+ 62. ['Macbeth', 'Banquo']
63
+ 63. ['Ron Weasley', 'Neville Longbottom']
64
+ 64. ['Bob Marley', 'Abu Bakr']
65
+ 65. ['Noah Schnapp', 'Galatasaray S.K.']
66
+ 66. ['Kendall Jenner', 'Bergen']
67
+ 67. ['Porter Wagoner', 'Dolly Parton']
68
+ 68. ['Stephen Hawking', 'Brian Cox']
69
+ 69. ['Johnny Knoxville', 'Catherine Zeta-Jones']
70
+ 70. ['Mark Drakeford', 'Rishi Sunak']
71
+ 71. ['J.R.R. Tolkien', 'C.S. Lewis']
72
+ 72. ['Beatles', 'Rolling Stones']
73
+ 73. ['Benedict Cumberbatch', 'Hanukkah']
74
+ 74. ['United States', 'United Kingdom']
75
+ 75. ['Linus Sebastian', 'Marques Brownlee']
76
+ 76. ['Saturn', 'Rachel Bilson']
77
+ 77. ['Huawei', 'China']
78
+ 78. ['Achilles', 'Jonathan Bailey']
79
+ 79. ['The Beatles', 'Queen']