import json import pandas as pd from datasets import load_dataset data_valid = load_dataset("cardiffnlp/relentless", split="validation") lc_valid = pd.read_csv("results_validation/lm_lc/lm.csv", index_col=0) qa_valid = pd.read_csv("results_validation/lm_qa/lm.csv", index_col=0) data_test = load_dataset("cardiffnlp/relentless", split="test") lc = pd.read_csv("results/lm_lc/lm.csv", index_col=0) qa = pd.read_csv("results/lm_qa/lm.csv", index_col=0) target = { "flan-t5-xxl": "Flan-T5\textsubscript{XXL}", "flan-ul2": "Flan-UL2", "opt-13b": "OPT\textsubscript{13B}", "davinci": "GPT-3\textsubscript{davinci}" } pretty_name = { 'competitor/rival of': "Rival", 'friend/ally of': "Ally", 'influenced by': "Inf", 'known for': "Know", 'similar to': "Sim" } p = 30 table = [] for prompt in ['qa', 'lc']: for i in target.keys(): for d in data_test: with open(f"results/lm_{prompt}/{i}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl") as f: negative_ppl = sorted([json.loads(x)['perplexity'] * -1 for x in f.read().split("\n") if len(x) > 0], reverse=True) top_pred = negative_ppl[int(len(negative_ppl) * p / 100)] bottom_pred = negative_ppl[-int(len(negative_ppl) * p / 100)] scores = sorted(d['scores_mean'], reverse=True) top = scores[int(len(scores) * p / 100)] bottom = scores[-int(len(scores) * p / 100)] with open(f"results_validation/lm_{prompt}/{i}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl") as f: negative_ppl_valid = [json.loads(x)['perplexity'] * -1 for x in f.read().split("\n") if len(x) > 0] _d = [x for x in data_valid if x['relation_type'] == d['relation_type']][0] scores_val = _d['scores_mean'] false_top = ", ".join([":".join(_d['pairs'][n]) for n, (s, p) in enumerate(zip(scores_val, negative_ppl_valid)) if s <= bottom and p >= top_pred]) false_bottom = ", ".join([":".join(_d['pairs'][n]) for n, (s, p) in enumerate(zip(scores_val, negative_ppl_valid)) if s >= top and p <= bottom_pred]) table.append({ "prompt": prompt, "model": target[i], "relation": pretty_name[d['relation_type']], "top": false_top, "bottom": false_bottom }) table = pd.DataFrame(table) # table.to_csv("results_validation/summary_validation.csv")