import os import json from glob import glob import pandas as pd from datasets import load_dataset os.makedirs("results/flan_ul2_additional_analysis", exist_ok=True) data = load_dataset("cardiffnlp/relentless", split="test") data = {i['relation_type']: i for i in data} pred_zero = {} for i in glob("results/lm_qa_zeroshot/flan-ul2/*.jsonl"): r = os.path.basename(i).replace("__", "/").replace("_", " ").replace("ppl.", "").replace("is ", "").replace(".jsonl", "") with open(i) as f: pred_zero[r] = [json.loads(l)['perplexity'] for l in f.read().split("\n")] pred_few = {} for i in glob("results/lm_qa_1shots_0seed/flan-ul2/*.jsonl"): r = os.path.basename(i).replace("__", "/").replace("_", " ").replace("ppl.", "").replace("is ", "").replace(".jsonl", "") with open(i) as f: pred_few[r] = [json.loads(l)['perplexity'] for l in f.read().split("\n")] def get_rank(score): s2r = {s: n for n, s in enumerate(sorted(score))} return [s2r[s] for s in score] for k, v in data.items(): df = pd.DataFrame({ "pairs": v['pairs'], "score_fewshot": pred_few[k], "score_zeroshot": pred_zero[k], "score_true": v["scores_mean"], "rank_fewshot": get_rank(pred_few[k]), "rank_zeroshot": get_rank(pred_zero[k]), "rank_true": v["ranks"], }) df.to_csv(f"results/flan_ul2_additional_analysis/{k[:4]}.csv", index=False)