import os import json import pandas as pd from datasets import load_dataset pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) os.makedirs("experiments/analysis/qualitative", exist_ok=True) # baselines target = { "flan-t5-xxl": "Flan-T5\textsubscript{XXL}", "opt-13b": "OPT\textsubscript{13B}", "davinci": "GPT-3\textsubscript{davinci}" } pretty_name = { 'average': "Avg", 'is competitor/rival of': "Rival", 'is friend/ally of': "Ally", 'is influenced by': "Inf", 'is known for': "Know", 'is similar to': "Sim" } p = 30 data = load_dataset("cardiffnlp/relentless_full", split="test") for prompt in ['qa', 'lc']: output = [] for d in data: for i in target.keys(): with open(f"experiments/results/lm_{prompt}/{i}/ppl.{d['relation_type'].replace(' ', '_').replace('/', '__')}.jsonl") as f: ppl = [json.loads(x)['perplexity'] for x in f.read().split("\n") if len(x) > 0] rank_map = {p: n for n, p in enumerate(sorted(ppl), 1)} prediction = [rank_map[p] for p in ppl] # get index total_n = len(d['ranks']) p = int(total_n / 3) top_n = [0, int(total_n * p / 100) + 1] top_label = [x for x, _ in sorted(enumerate(d['ranks']), key=lambda x: x[1])[top_n[0]: top_n[1]]] bottom_n = [total_n - int(total_n * p / 100), total_n] bottom_label = [x for x, _ in sorted(enumerate(d['ranks']), key=lambda x: x[1])[bottom_n[0]: bottom_n[1]]] mid_n = [top_n[1], bottom_n[0]] mid_label = [x for x, _ in sorted(enumerate(d['ranks']), key=lambda x: x[1])[mid_n[0]: mid_n[1]]] # top top_pred = [x for x, _ in sorted(enumerate(prediction), key=lambda x: x[1])[top_n[0]: top_n[1]]] top_acc = len(set(top_pred).intersection(set(top_label))) / len(top_label) * 100 # middle mid_pred = [x for x, _ in sorted(enumerate(prediction), key=lambda x: x[1])[mid_n[0]: mid_n[1]]] mid_acc = len(set(mid_pred).intersection(set(mid_label))) / len(mid_label) * 100 # top bottom_pred = [x for x, _ in sorted(enumerate(prediction), key=lambda x: x[1])[bottom_n[0]: bottom_n[1]]] bottom_acc = len(set(bottom_pred).intersection(set(bottom_label))) / len(bottom_label) * 100 # the index of bottom p percent output.append({ "relation_type": d['relation_type'], "model": i, "top_pred_and_bottom_gold": [" : ".join(d['pairs'][x]) for x in set(top_pred).intersection(bottom_label)], "bottom_pred_and_top_gold": [" : ".join(d['pairs'][x]) for x in set(bottom_pred).intersection(top_label)], }) df = pd.DataFrame(output) df.to_csv(f"experiments/analysis/qualitative/{prompt}.{p}.csv", index=False) # df.pop("top_num") # df.pop("bottom_num") df['relation_type'] = [pretty_name[i] for i in df['relation_type']] print(df) new_df = [] for _, i in df.iterrows(): top_pred_and_bottom_gold = i['top_pred_and_bottom_gold'][:min(len(i['top_pred_and_bottom_gold']), 4)] bottom_pred_and_top_gold = i['bottom_pred_and_top_gold'][:min(len(i['bottom_pred_and_top_gold']), 4)] for x in range(max(len(bottom_pred_and_top_gold), len(top_pred_and_bottom_gold))): # for x in range(max(len(bottom_pred_and_top_gold), len(top_pred_and_bottom_gold)) // 3): if len(top_pred_and_bottom_gold) >= x + 1: t = ", ".join(top_pred_and_bottom_gold[x * 1:min(len(top_pred_and_bottom_gold) + 1, (x + 1)*1)]) else: t = "" if len(bottom_pred_and_top_gold) >= x + 1: b = ", ".join(bottom_pred_and_top_gold[x*1:min(len(bottom_pred_and_top_gold) + 1, (x + 1)*1)]) else: b = "" new_df.append({"relation_type": i['relation_type'], "model": i['model'], "top": t, "bottom": b}) df_new = pd.DataFrame(new_df) df_new['model'] = [target[i] for i in df_new['model']] df_new = df_new[['model', 'relation_type', 'top', 'bottom']] df_new = df_new.sort_values(by=['model', 'relation_type']) df_new.to_csv(f"experiments/analysis/qualitative/{prompt}.{p}.format.csv", index=False) with pd.option_context("max_colwidth", 1000): table = df_new.to_latex(index=False, escape=False) table = table.split(r"\midrule")[1].split(r"\bottomrule")[0] print(table)