import os from time import sleep import pandas as pd import openai from datasets import load_dataset data = load_dataset("cardiffnlp/relentless_full", split="test") openai.api_key = os.getenv("OPENAI_API_KEY", None) pretty_name = {"is competitor/rival of": "Rival", "is friend/ally of": "Ally", "is influenced by": "Inf", "is known for": "Know", "is similar to": "Sim"} pretty_model = {"gpt-3.5-turbo": "GPT-3.5", "gpt-4": "GPT-4"} def get_reply(model, text): while True: try: reply = openai.ChatCompletion.create(model=model, messages=[{"role": "user", "content": text}]) break except Exception: print('Rate limit exceeded. Waiting for 10 seconds.') sleep(10) return reply['choices'][0]['message']['content'] prompt_dict = { "is friend/ally of": "entities that are friends or allies", "is competitor/rival of": "entities that are competitors or rivals", "is known for": "what entities are known for", "is influenced by": "what has influenced different entities", "is similar to": "entities that are similar" } def get_prompt(_data): ref = "\n".join([str(_i) for _i in _data["positive_examples"]]) prefix = f'Consider the following reference list of {prompt_dict[_data["relation_type"]]}, \n{ref}\n' \ f'Now sort the entity pairs from the following list based on the extent to which they also represent ' \ f'{prompt_dict[_data["relation_type"]]} in descending order. Do not include the pairs from the reference list. ' \ f'The output should contain all the entity pairs from the following list and no duplicates:\n' x = "\n".join([f'{str(_i)}' for _i in _data["pairs"]]) return f'{prefix}\n\n{x}' if __name__ == '__main__': os.makedirs('experiments/results/chat', exist_ok=True) full_result = [] valid_count = [] for target_model in ['gpt-3.5-turbo', 'gpt-4']: for d in data: output_file = f"experiments/results/chat/{target_model}.{d['relation_type'].replace(' ', '_').replace('/', '-')}.json" if not os.path.exists(output_file): print(target_model, d['relation_type']) i = get_prompt(d) out = get_reply(target_model, i) with open(output_file, 'w') as f: f.write(out) with open(output_file) as f: string_pairs = [f'{str(_i)}' for _i in d["pairs"]] out = [i for i in f.read().split("\n") if len(i) > 0] # out = [str(eval(i)) for i in out] new_out = [] for i in out: try: i = "[" + i.replace("],", "]").split("[")[1] i = i.split("]")[0] + "]" i = str(eval(i)) if i not in new_out: new_out.append(i) except Exception: continue ex = [i for i in string_pairs if i not in new_out] valid_n = len(d['pairs']) - len(ex) # valid_count.append({"model": target_model, "relation_type": d['relation_type'], "valid": f"{valid_n} ({round(100 * valid_n/len(d['pairs']))}%)"}) valid_count.append({"model": target_model, "relation_type": d['relation_type'], "valid": 100 * valid_n / len(d['pairs'])}) new_out = new_out + ex maps = {x: n + 1 for n, x in enumerate(new_out)} prediction = [maps[i] for i in string_pairs] true_rank = d['ranks'] tmp = pd.DataFrame([true_rank, prediction], index=['true', 'pred']).T cor = tmp.corr("spearman").values[0, 1] full_result.append({"model": target_model, "relation_type": d['relation_type'], "correlation": cor}) df = pd.DataFrame(full_result) df = df.pivot(columns="relation_type", index="model", values="correlation") df['Avg'] = df.mean(1) df = (df * 100).round(1) df_cnt = pd.DataFrame(valid_count) df_cnt = df_cnt.pivot(index='model', columns='relation_type') df_cnt['Avg'] = df_cnt.mean(1) df_cnt = df_cnt.round(1) df = pd.DataFrame(df.astype(str).values + " (" + df_cnt.astype(str).values + "%)", columns=[pretty_name[c] if c in pretty_name else c for c in df.columns], index=df.index) df.index = [pretty_model[m] for m in df.index] print(df.to_latex()) df = df.T # df.to_csv("experiments/results/chat/chat.csv")