corpus-carolina / corpus-carolina.py
guilhermelmello's picture
Update loading script to v1.2
816a97f
raw
history blame
6.66 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
# script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Carolina Corpus"""
from collections import defaultdict
from lxml import etree
import os
import datasets
import gzip
_HOMEPAGE = "https://sites.usp.br/corpuscarolina/"
_DESCRIPTION = """
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a
robust volume of texts of varied typology in contemporary Brazilian Portuguese
(1970-2021).
"""
_CITATION = r"""
@misc{corpusCarolinaV1.2,
title={
Carolina:
The Open Corpus for Linguistics and Artificial Intelligence},
author={
Finger, Marcelo and
Paixão de Sousa, Maria Clara and
Namiuti, Cristiane and
Martins do Monte, Vanessa and
Costa, Aline Silva and
Serras, Felipe Ribas and
Sturzeneker, Mariana Lourenço and
Guets, Raquel de Paula and
Mesquita, Renata Morais and
Mello, Guilherme Lamartine de and
Crespo, Maria Clara Ramos Morales and
Rocha, Maria Lina de Souza Jeannine and
Brasil, Patrícia and
Silva, Mariana Marques da and
Palma, Mayara Feliciano},
howpublished={\url{https://sites.usp.br/corpuscarolina/corpus}},
year={2022},
note={Version 1.2 (Ada)},
}
"""
_LICENSE = """
The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was
compiled for academic purposes, namely linguistic and computational analysis.
It is composed of texts assembled in various digital repositories, whose
licenses are multiple and therefore should be observed when making use of the
corpus. The Carolina headers are licensed under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International."
"""
def _taxonomies():
"""Creates a map between taxonomy code and name
Returns
-------
dict
The dictionary of codes and names.
"""
return dict(
dat="datasets and other corpora",
jud="judicial branch",
leg="legislative branch",
pub="public domain works",
soc="social media",
uni="university domains",
wik="wikis",
)
_VERSION = "1.2.0"
_CORPUS_URL = "corpus/{tax}/"
_CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256"
class CarolinaConfig(datasets.BuilderConfig):
"""Carolina Configuration."""
def __init__(self, taxonomy: str = None, **kwargs):
"""BuilderConfig for Carolina
Parameters
----------
taxonomy : str
The taxonomy code (3 letters). The code defines the taxonomy
to download. If `None`, all taxonomies will be downloaded.
**kwargs
Arguments passed to super.
"""
# validates taxonomy
if taxonomy is None:
taxonomy = "all"
elif taxonomy != "all" and taxonomy not in _taxonomies():
raise ValueError(f"Invalid taxonomy: {taxonomy}")
# custom name and description
description = "Carolina corpus."
if taxonomy == "all":
name = "carolina"
description += " Using all taxonomies."
else:
name = _taxonomies()[taxonomy]
description += f" Using taxonomy {taxonomy}"
super(CarolinaConfig, self).__init__(
name=name, description=description, **kwargs)
# Carolina attributes
self.taxonomy = taxonomy
self.version = datasets.Version(_VERSION)
class Carolina(datasets.GeneratorBasedBuilder):
"""Carolina Downloader and Builder"""
BUILDER_CONFIG_CLASS = CarolinaConfig
def _info(self):
features = datasets.Features({
"meta": datasets.Value("string"),
"text": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
supervised_keys=None,
homepage=_HOMEPAGE,
citation=_CITATION,
features=features,
license=_LICENSE
)
def _split_generators(self, dl_manager):
# list taxonomies to download
if self.config.taxonomy == "all":
taxonomies = _taxonomies().values()
else:
taxonomies = [_taxonomies()[self.config.taxonomy]]
# download checksum files
checksum_urls = {t: _CHECKSUM_FNAME.format(tax=t) for t in taxonomies}
checksum_paths = dl_manager.download(checksum_urls)
# prepare xml file name and zip urls
gzip_urls = list()
for tax, cpath in checksum_paths.items():
tax_path = _CORPUS_URL.format(tax=tax)
with open(cpath, encoding="utf-8") as cfile:
for line in cfile:
xml_tax_path = line.split()[1] # xml file inside taxonomy
zip_fname = xml_tax_path + ".gz" # zip file inside taxonomy
zip_fpath = os.path.join(tax_path, zip_fname) # path inside corpus
gzip_urls.append(zip_fpath)
gzip_files = dl_manager.download(gzip_urls)
return [
datasets.SplitGenerator(
name="corpus",
gen_kwargs={"filepaths": gzip_files}
)
]
def _generate_examples(self, filepaths):
TEI_NS = "{http://www.tei-c.org/ns/1.0}"
parser_params = dict(
huge_tree=True,
encoding="utf-8",
tag=f"{TEI_NS}TEI"
)
_key = 0
for path in filepaths:
gzip_file = gzip.GzipFile(path, "rb")
for _, tei in etree.iterparse(gzip_file, **parser_params):
header = tei.find(f"{TEI_NS}teiHeader")
meta = etree.tostring(
header, encoding="utf-8").decode("utf-8")
text = ' '.join([e.text
for e in tei.findall(f".//{TEI_NS}body/{TEI_NS}p")
if e.text is not None
])
yield _key, {
"meta": meta,
"text": text
}
_key += 1
gzip_file.close()