Datasets:
guilhermelmello
commited on
Commit
•
09ef168
1
Parent(s):
556ac02
Add loading script.
Browse files- corpus-carolina.py +210 -0
corpus-carolina.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset
|
2 |
+
# script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Carolina Corpus"""
|
16 |
+
|
17 |
+
from lxml import etree
|
18 |
+
import os
|
19 |
+
import datasets
|
20 |
+
|
21 |
+
|
22 |
+
_HOMEPAGE = "https://sites.usp.br/corpuscarolina/"
|
23 |
+
|
24 |
+
|
25 |
+
_DESCRIPTION = """
|
26 |
+
Carolina is an Open Corpus for Linguistics and Artificial Intelligence with a
|
27 |
+
robust volume of texts of varied typology in contemporary Brazilian Portuguese
|
28 |
+
(1970-2021).
|
29 |
+
"""
|
30 |
+
|
31 |
+
|
32 |
+
_CITATION = r"""
|
33 |
+
@misc{corpusCarolinaV1.1,
|
34 |
+
title={
|
35 |
+
Carolina:
|
36 |
+
The Open Corpus for Linguistics and Artificial Intelligence},
|
37 |
+
author={
|
38 |
+
Finger, Marcelo and
|
39 |
+
Paixão de Sousa, Maria Clara and
|
40 |
+
Namiuti, Cristiane and
|
41 |
+
Martins do Monte, Vanessa and
|
42 |
+
Costa, Aline Silva and
|
43 |
+
Serras, Felipe Ribas and
|
44 |
+
Sturzeneker, Mariana Lourenço and
|
45 |
+
Guets, Raquel de Paula and
|
46 |
+
Mesquita, Renata Morais and
|
47 |
+
Mello, Guilherme Lamartine de and
|
48 |
+
Crespo, Maria Clara Ramos Morales and
|
49 |
+
Rocha, Maria Lina de Souza Jeannine and
|
50 |
+
Brasil, Patrícia and
|
51 |
+
Silva, Mariana Marques da and
|
52 |
+
Palma, Mayara Feliciano},
|
53 |
+
howpublished={\url{https://sites.usp.br/corpuscarolina/corpus}},
|
54 |
+
year={2022},
|
55 |
+
note={Version 1.1 (Ada)},
|
56 |
+
}
|
57 |
+
"""
|
58 |
+
|
59 |
+
|
60 |
+
_LICENSE = """
|
61 |
+
The Open Corpus for Linguistics and Artificial Intelligence (Carolina) was
|
62 |
+
compiled for academic purposes, namely linguistic and computational analysis.
|
63 |
+
It is composed of texts assembled in various digital repositories, whose
|
64 |
+
licenses are multiple and therefore should be observed when making use of the
|
65 |
+
corpus. The Carolina headers are licensed under Creative Commons
|
66 |
+
Attribution-NonCommercial-ShareAlike 4.0 International."
|
67 |
+
"""
|
68 |
+
|
69 |
+
|
70 |
+
def _taxonomies():
|
71 |
+
"""Creates a map between taxonomy code and name
|
72 |
+
|
73 |
+
Returns
|
74 |
+
-------
|
75 |
+
dict
|
76 |
+
The dictionary of codes and names.
|
77 |
+
"""
|
78 |
+
return dict(
|
79 |
+
dat="datasets and other corpora",
|
80 |
+
jud="judicial branch",
|
81 |
+
leg="legislative branch",
|
82 |
+
pub="public domain works",
|
83 |
+
soc="social media",
|
84 |
+
uni="university_domains",
|
85 |
+
wik="wikis",
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
_VERSION = "1.1.0"
|
90 |
+
_CORPUS_URL = "corpus/{taxonomy}/"
|
91 |
+
_CHECKSUM_FNAME = _CORPUS_URL + "checksum.sha256"
|
92 |
+
|
93 |
+
|
94 |
+
class CarolinaConfig(datasets.BuilderConfig):
|
95 |
+
"""Carolina Configuration."""
|
96 |
+
def __init__(self, taxonomy: str = None, **kwargs):
|
97 |
+
"""BuilderConfig for Carolina
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
taxonomy : str
|
102 |
+
The taxonomy code (3 letters). The code defines the taxonomy
|
103 |
+
to download. If `None`, all taxonomies will be downloaded.
|
104 |
+
**kwargs
|
105 |
+
Arguments passed to super.
|
106 |
+
"""
|
107 |
+
# validates taxonomy
|
108 |
+
if taxonomy is None:
|
109 |
+
taxonomy = "all"
|
110 |
+
elif taxonomy != "all" and taxonomy not in _taxonomies():
|
111 |
+
raise ValueError(f"Invalid taxonomy: {taxonomy}")
|
112 |
+
|
113 |
+
# custom name and description
|
114 |
+
description = "Carolina corpus."
|
115 |
+
if taxonomy == "all":
|
116 |
+
name = "carolina"
|
117 |
+
description += " Using all taxonomies."
|
118 |
+
else:
|
119 |
+
name = _taxonomies()[taxonomy]
|
120 |
+
description += f" Using taxonomy {taxonomy}"
|
121 |
+
|
122 |
+
super(CarolinaConfig, self).__init__(
|
123 |
+
name=name, description=description, **kwargs)
|
124 |
+
|
125 |
+
# Carolina attributes
|
126 |
+
self.taxonomy = taxonomy
|
127 |
+
self.version = datasets.Version(_VERSION)
|
128 |
+
|
129 |
+
|
130 |
+
class Carolina(datasets.GeneratorBasedBuilder):
|
131 |
+
"""Carolina Downloader and Builder"""
|
132 |
+
|
133 |
+
BUILDER_CONFIG_CLASS = CarolinaConfig
|
134 |
+
|
135 |
+
def _info(self):
|
136 |
+
features = datasets.Features({
|
137 |
+
"meta": datasets.Value("string"),
|
138 |
+
"text": datasets.Value("string")
|
139 |
+
})
|
140 |
+
|
141 |
+
return datasets.DatasetInfo(
|
142 |
+
description=_DESCRIPTION,
|
143 |
+
homepage=_HOMEPAGE,
|
144 |
+
citation=_CITATION,
|
145 |
+
features=features,
|
146 |
+
license=_LICENSE
|
147 |
+
)
|
148 |
+
|
149 |
+
def _split_generators(self, dl_manager):
|
150 |
+
# list taxonomies to download
|
151 |
+
if self.config.taxonomy == "all":
|
152 |
+
taxonomies = _taxonomies().values()
|
153 |
+
else:
|
154 |
+
taxonomies = [_taxonomies()[self.config.taxonomy]]
|
155 |
+
|
156 |
+
zip_urls = dict()
|
157 |
+
for taxonomy in taxonomies:
|
158 |
+
# download checksum file
|
159 |
+
checksum_path = _CHECKSUM_FNAME.format(taxonomy=taxonomy)
|
160 |
+
checksum_path = dl_manager.download(checksum_path)
|
161 |
+
|
162 |
+
tax_url = _CORPUS_URL.format(taxonomy=taxonomy)
|
163 |
+
|
164 |
+
# extract and build zip urls
|
165 |
+
with open(checksum_path, encoding="utf-8") as cfile:
|
166 |
+
for line in cfile:
|
167 |
+
fname = line.split()[1]
|
168 |
+
if fname.endswith(".xml.zip"):
|
169 |
+
zip_url = tax_url + fname # download url
|
170 |
+
fname = os.path.split(fname)[1] # removes subdirs
|
171 |
+
fname = fname[:-4] # removes .zip
|
172 |
+
zip_urls[fname] = zip_url # xml -> zip url
|
173 |
+
|
174 |
+
# extractions are made in cache folders and
|
175 |
+
# the path returned is the folder path, not the
|
176 |
+
# extracted file (or files). It is necessary to
|
177 |
+
# build the xml file path. It is made using the
|
178 |
+
# zip_urls dict structure.
|
179 |
+
extracted = dl_manager.download_and_extract(zip_urls)
|
180 |
+
xml_files = [os.path.join(v, k) for k, v in extracted.items()]
|
181 |
+
xml_files = sorted(xml_files)
|
182 |
+
|
183 |
+
return [
|
184 |
+
datasets.SplitGenerator(
|
185 |
+
name="corpus",
|
186 |
+
gen_kwargs={"filepaths": xml_files}
|
187 |
+
)
|
188 |
+
]
|
189 |
+
|
190 |
+
def _generate_examples(self, filepaths):
|
191 |
+
TEI_NS = "{http://www.tei-c.org/ns/1.0}"
|
192 |
+
parser_params = dict(
|
193 |
+
huge_tree=True,
|
194 |
+
encoding="utf-8",
|
195 |
+
tag=f"{TEI_NS}TEI"
|
196 |
+
)
|
197 |
+
|
198 |
+
_key = 0
|
199 |
+
for path in filepaths:
|
200 |
+
# parse xml file
|
201 |
+
for _, tei in etree.iterparse(path, **parser_params):
|
202 |
+
header = tei.find(f"{TEI_NS}teiHeader")
|
203 |
+
|
204 |
+
example = {
|
205 |
+
"meta": etree.tostring(
|
206 |
+
header, encoding="utf-8").decode("utf-8"),
|
207 |
+
"text": tei.find(f".//{TEI_NS}body/{TEI_NS}p").text
|
208 |
+
}
|
209 |
+
yield _key, example
|
210 |
+
_key += 1
|