add summarization
Browse files
QR-AN.py
CHANGED
@@ -92,6 +92,11 @@ class QRANDataset(datasets.GeneratorBasedBuilder):
|
|
92 |
name="qran_full",
|
93 |
version=datasets.Version("1.0.0"),
|
94 |
description="QRAN Dataset: A classification task of French Parliament questions-answers",
|
|
|
|
|
|
|
|
|
|
|
95 |
)
|
96 |
]
|
97 |
|
@@ -103,16 +108,14 @@ class QRANDataset(datasets.GeneratorBasedBuilder):
|
|
103 |
features=datasets.Features(
|
104 |
{
|
105 |
"text": datasets.Value("string"),
|
106 |
-
|
107 |
-
|
108 |
#"label_name": datasets.Value("string"),
|
109 |
"label": datasets.features.ClassLabel(names=_LABELS),
|
110 |
}
|
111 |
),
|
112 |
supervised_keys=None,
|
113 |
citation=_CITATION,
|
114 |
-
task_templates=[TextClassification(
|
115 |
-
text_column="text", label_column="label")],
|
116 |
)
|
117 |
|
118 |
def _split_generators(self, dl_manager):
|
@@ -140,6 +143,9 @@ class QRANDataset(datasets.GeneratorBasedBuilder):
|
|
140 |
answer, question = data["answer"], data["question"]
|
141 |
label = self._LABELS_DICT[data["label_name"]]
|
142 |
|
|
|
|
|
|
|
143 |
if self.config.name == "qran_answer":
|
144 |
text = answer
|
145 |
elif self.config.name == "qran_question":
|
|
|
92 |
name="qran_full",
|
93 |
version=datasets.Version("1.0.0"),
|
94 |
description="QRAN Dataset: A classification task of French Parliament questions-answers",
|
95 |
+
),
|
96 |
+
QRANConfig(
|
97 |
+
name="qran_generation",
|
98 |
+
version=datasets.Version("1.0.0"),
|
99 |
+
description="QRAN Dataset: A generation task of French Parliament questions-answers",
|
100 |
)
|
101 |
]
|
102 |
|
|
|
108 |
features=datasets.Features(
|
109 |
{
|
110 |
"text": datasets.Value("string"),
|
111 |
+
"question": datasets.Value("string"),
|
112 |
+
"answer": datasets.Value("string"),
|
113 |
#"label_name": datasets.Value("string"),
|
114 |
"label": datasets.features.ClassLabel(names=_LABELS),
|
115 |
}
|
116 |
),
|
117 |
supervised_keys=None,
|
118 |
citation=_CITATION,
|
|
|
|
|
119 |
)
|
120 |
|
121 |
def _split_generators(self, dl_manager):
|
|
|
143 |
answer, question = data["answer"], data["question"]
|
144 |
label = self._LABELS_DICT[data["label_name"]]
|
145 |
|
146 |
+
if self.config.name == "qran_generation":
|
147 |
+
yield id_, {"question": question, "answer": answer}
|
148 |
+
|
149 |
if self.config.name == "qran_answer":
|
150 |
text = answer
|
151 |
elif self.config.name == "qran_question":
|
README.md
CHANGED
@@ -1,18 +1,27 @@
|
|
1 |
---
|
2 |
languages: fr
|
3 |
-
task_categories: text-classification
|
4 |
task_ids:
|
5 |
- multi-class-classification
|
6 |
- topic-classification
|
|
|
|
|
|
|
|
|
7 |
size_categories: 10K<n<100K
|
8 |
---
|
9 |
|
10 |
-
**QR-AN Dataset: a classification dataset of french Parliament questions-answers.**
|
11 |
|
12 |
This is a dataset for theme/topic classification, made of questions and answers from https://www2.assemblee-nationale.fr/recherche/resultats_questions . \
|
13 |
|
14 |
It contains 188 unbalanced classes, 80k questions-answers divided into 3 splits: train (60k), val (10k) and test (10k). \
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
Compatible with [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) script:
|
17 |
```
|
18 |
export MODEL_NAME=camembert-base
|
|
|
1 |
---
|
2 |
languages: fr
|
|
|
3 |
task_ids:
|
4 |
- multi-class-classification
|
5 |
- topic-classification
|
6 |
+
- summarization
|
7 |
+
task_categories:
|
8 |
+
- text-classification
|
9 |
+
- conditional-text-generation
|
10 |
size_categories: 10K<n<100K
|
11 |
---
|
12 |
|
13 |
+
**QR-AN Dataset: a classification and generation dataset of french Parliament questions-answers.**
|
14 |
|
15 |
This is a dataset for theme/topic classification, made of questions and answers from https://www2.assemblee-nationale.fr/recherche/resultats_questions . \
|
16 |
|
17 |
It contains 188 unbalanced classes, 80k questions-answers divided into 3 splits: train (60k), val (10k) and test (10k). \
|
18 |
|
19 |
+
Can be used for generation with 'qran-generation'
|
20 |
+
This dataset is compatible with the [`run_summarization.py`](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) script from Transformers if you add this line to the `summarization_name_mapping` variable:
|
21 |
+
```python
|
22 |
+
"ccdv/cass-summarization": ("question", "answer")
|
23 |
+
```
|
24 |
+
|
25 |
Compatible with [run_glue.py](https://github.com/huggingface/transformers/tree/master/examples/pytorch/text-classification) script:
|
26 |
```
|
27 |
export MODEL_NAME=camembert-base
|