File size: 4,846 Bytes
c5b8a78
 
 
 
 
 
 
 
 
 
 
 
 
 
0a0b00b
c5b8a78
 
 
 
 
0a0b00b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5b8a78
 
 
 
0a0b00b
c5b8a78
0a0b00b
3fa893d
0a0b00b
7e9cbee
cf63bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e9cbee
cf63bc2
7e9cbee
cf63bc2
 
 
 
 
 
 
 
 
 
 
 
 
7e9cbee
 
cf63bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import csv
import json
import os
from datasets import GeneratorBasedBuilder, Features, Value, Sequence, SplitGenerator, BuilderConfig, DatasetInfo, Split
import logging
import pandas as pd
from typing import Dict

CITATION = ""
_DESCRIPTION = "Demo" 
_URL = ""
_HOMEPAGE = ""
_LICENSE = ""

_URL = "https://github.com/catherine-ywang/reddit_climate_comment_data/raw/main/climate_comments.csv.zip"

class NewDataset(GeneratorBasedBuilder):
    def _info(self):
        return DatasetInfo(
            description=_DESCRIPTION,
            features=Features({
         "id": Value("string"),
         "post_title": Value("string"),
         "post_author": Value("string"),
         "post_body": Value("string"),
         "post_url": Value("string"),
         "post_pic": Value("string"),
         "subreddit": Value("string"),
         "post_timestamp": Value("string"),
         "post_upvotes": Value("int32"),
         "post_permalink": Value("string"),
         "comments": Sequence({
             "CommentID": Value("string"),
             "CommentAuthor": Value("string"),
             "CommentBody": Value("string"),
             "CommentTimestamp": Value("string"),
             "CommentUpvotes": Value("int32"),
             "CommentPermalink": Value("string"),
             "replies": Sequence({
                 "ReplyID": Value("string"),
                 "ReplyAuthor": Value("string"),
                 "ReplyBody": Value("string"),
                 "ReplyTimestamp": Value("string"),
                 "ReplyUpvotes": Value("int32"),
                 "ReplyPermalink": Value("string"),
             })
         })
     }),
            homepage=_HOMEPAGE,
        )
    def _split_generators(self, dl_manager):
        path = dl_manager.download_and_extract(_URL)
        train_splits = SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": path+"/climate_comments.csv"})
        return [train_splits]
        
    def _generate_examples(self, filepath):
        df = pd.read_csv(filepath)

        # Drop duplicate comments
        df = df.drop_duplicates(subset=['CommentID', 'CommentBody'])

        # Group the DataFrame by post ID
        grouped_df = df.groupby('PostID')

        for post_id, group in grouped_df:
            post_data = group.iloc[0]  # Get the data for the post

            post_title = post_data['PostTitle']
            post_author = post_data['PostAuthor']
            post_body = post_data['PostBody']
            post_url = post_data['PostUrl']
            post_pic = post_data['PostPic']
            subreddit = post_data['Subreddit']
            post_timestamp = post_data['PostTimestamp']
            post_upvotes = post_data['PostUpvotes']
            post_permalink = post_data['PostPermalink']

            comments = []

            # Extract unique comments
            unique_comment_ids = group['CommentID'].unique()
            for comment_id in unique_comment_ids:
                comment_row = group[group['CommentID'] == comment_id].iloc[0]

                comment = {
                    "CommentID": comment_id,
                    "CommentAuthor": comment_row['CommentAuthor'],
                    "CommentBody": comment_row['CommentBody'],
                    "CommentTimestamp": comment_row['CommentTimestamp'],
                    "CommentUpvotes": comment_row['CommentUpvotes'],
                    "CommentPermalink": comment_row['CommentPermalink'],
                    "replies": []  # Initialize empty list for replies
                }

                # Check if there are replies for the current comment
                replies_data = df[df['CommentID'] == comment_id][['ReplyID', 'ReplyAuthor', 'ReplyBody', 'ReplyTimestamp', 'ReplyUpvotes', 'ReplyPermalink']]
                for _, reply_data in replies_data.iterrows():
                    reply = {
                        "ReplyID": str(reply_data['ReplyID']),
                        "ReplyAuthor": reply_data['ReplyAuthor'],
                        "ReplyBody": reply_data['ReplyBody'],
                        "ReplyTimestamp": reply_data['ReplyTimestamp'],
                        "ReplyUpvotes": reply_data['ReplyUpvotes'],
                        "ReplyPermalink": reply_data['ReplyPermalink']
                    }
                    comment["replies"].append(reply)

                comments.append(comment)

            yield post_id, {
                "id": post_id,
                "post_title": post_title,
                "post_author": post_author,
                "post_body": post_body,
                "post_url": post_url,
                "post_pic": post_pic,
                "subreddit": subreddit,
                "post_timestamp": post_timestamp,
                "post_upvotes": post_upvotes,
                "post_permalink": post_permalink,
                "comments": comments
            }