reddit_climate_comment / reddit_climate_comment.py
cathw's picture
Upload reddit_climate_comment.py
a5df15a verified
raw
history blame
4.93 kB
import csv
import json
import os
from datasets import GeneratorBasedBuilder, Features, Value, Sequence, SplitGenerator, BuilderConfig, DatasetInfo, Split
import logging
import pandas as pd
from typing import Dict
CITATION = ""
_DESCRIPTION = "Demo"
_URL = ""
_HOMEPAGE = ""
_LICENSE = ""
_URL = "https://github.com/catherine-ywang/reddit_climate_comment_data/raw/main/climate_comments.json.zip"
class NewDataset(GeneratorBasedBuilder):
def _info(self):
return DatasetInfo(
description=_DESCRIPTION,
features = Features({
"Posts": Sequence({
"PostID": Value("string"),
"PostTitle": Value("string"),
"PostAuthor": Value("string"),
"PostBody": Value("string"),
"PostUrl": Value("string"),
"PostPic": Value("string"),
"Subreddit": Value("string"),
"PostTimestamp": Value("string"),
"PostUpvotes": Value("int32"),
"PostPermalink": Value("string"),
"Comments": Sequence({
"CommentID": Value("string"),
"CommentAuthor": Value("string"),
"CommentBody": Value("string"),
"CommentTimestamp": Value("string"),
"CommentUpvotes": Value("int32"),
"CommentPermalink": Value("string"),
"Replies": Sequence({
"ReplyID": Value("string"),
"ReplyAuthor": Value("string"),
"ReplyBody": Value("string"),
"ReplyTimestamp": Value("string"),
"ReplyUpvotes": Value("int32"),
"ReplyPermalink": Value("string"),
})
})
})
}),
homepage=_HOMEPAGE,
)
def _split_generators(self, dl_manager):
path = dl_manager.download_and_extract(_URL)
train_splits = SplitGenerator(name=Split.TRAIN, gen_kwargs={"filepath": path+"/climate_comments.json"})
return [train_splits]
def _generate_examples(self, path):
with open(path, encoding="utf-8") as f:
data = json.load(f)
for post in data["Posts"]:
post_id = post["PostID"]
post_title = post["PostTitle"]
post_author = post["PostAuthor"]
post_body = post["PostBody"]
post_url = post["PostUrl"]
post_pic = post["PostPic"]
subreddit = post["Subreddit"]
post_timestamp = post["PostTimestamp"]
post_upvotes = int(post["PostUpvotes"])
post_permalink = post["PostPermalink"]
comments = post["Comments"]
for comment in comments:
comment_id = comment["CommentID"]
comment_author = comment["CommentAuthor"]
comment_body = comment["CommentBody"]
comment_timestamp = comment["CommentTimestamp"]
comment_upvotes = int(comment["CommentUpvotes"])
comment_permalink = comment["CommentPermalink"]
replies = comment.get("Replies", [])
for reply in replies:
reply_id = reply["ReplyID"]
reply_author = reply["ReplyAuthor"]
reply_body = reply["ReplyBody"]
reply_timestamp = reply["ReplyTimestamp"]
reply_upvotes = int(reply["ReplyUpvotes"])
reply_permalink = reply["ReplyPermalink"]
yield f"{post_id}_{comment_id}_{reply_id}", {
"post_id": post_id,
"post_title": post_title,
"post_author": post_author,
"post_body": post_body,
"post_url": post_url,
"post_pic": post_pic,
"subreddit": subreddit,
"post_timestamp": post_timestamp,
"post_upvotes": post_upvotes,
"post_permalink": post_permalink,
"comment_id": comment_id,
"comment_author": comment_author,
"comment_body": comment_body,
"comment_timestamp": comment_timestamp,
"comment_upvotes": comment_upvotes,
"comment_permalink": comment_permalink,
"reply_id": reply_id,
"reply_author": reply_author,
"reply_body": reply_body,
"reply_timestamp": reply_timestamp,
"reply_upvotes": reply_upvotes,
"reply_permalink": reply_permalink,
}