cathw commited on
Commit
1fcf9da
1 Parent(s): 117da23

Delete reddit_climate_data.py

Browse files
Files changed (1) hide show
  1. reddit_climate_data.py +0 -182
reddit_climate_data.py DELETED
@@ -1,182 +0,0 @@
1
-
2
- """TODO: Add a description here."""
3
-
4
-
5
- import csv
6
- import json
7
- import os
8
- import logging
9
-
10
-
11
- import datasets
12
-
13
-
14
- # TODO: Add BibTeX citation
15
- # Find for instance the citation on arxiv or on the dataset repo/website
16
- _CITATION = """\
17
- @InProceedings{huggingface:dataset,
18
- title = {A great new dataset},
19
- author={huggingface, Inc.
20
- },
21
- year={2024}
22
- }
23
- """
24
-
25
- # TODO: Add description of the dataset here
26
- # You can copy an official description
27
- _DESCRIPTION = """\
28
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
29
- """
30
-
31
- # TODO: Add a link to an official homepage for the dataset here
32
- _HOMEPAGE = ""
33
-
34
- # TODO: Add the licence for the dataset here if you can find it
35
- _LICENSE = ""
36
-
37
- # TODO: Add link to the official dataset URLs here
38
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
39
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
40
- _URLS = {
41
- "reddit_climate": "cathw/reddit_climate_comment"
42
- }
43
-
44
- # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
45
- class NewDataset(datasets.GeneratorBasedBuilder):
46
- """TODO: Short description of my dataset."""
47
-
48
- VERSION = datasets.Version("1.1.0")
49
-
50
- # This is an example of a dataset with multiple configurations.
51
- # If you don't want/need to define several sub-sets in your dataset,
52
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
53
-
54
- # If you need to make complex sub-parts in the datasets with configurable options
55
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
56
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
57
-
58
- # You will be able to load one or the other configurations in the following list with
59
- # data = datasets.load_dataset('my_dataset', 'first_domain')
60
- # data = datasets.load_dataset('my_dataset', 'second_domain')
61
- BUILDER_CONFIGS = [
62
- datasets.BuilderConfig(name="reddit_climate", version=VERSION, description="This part of my dataset covers a first domain")
63
- ]
64
-
65
- DEFAULT_CONFIG_NAME = "reddit_climate" # It's not mandatory to have a default configuration. Just use one if it make sense.
66
-
67
- def _info(self):
68
-
69
- features = datasets.Features({
70
- "Subreddit": datasets.Value("string"),
71
- "Posts": datasets.Sequence({
72
- "PostID": datasets.Value("int32"),
73
- "PostTitle": datasets.Value("string"),
74
- "Comments": datasets.Sequence({
75
- "CommentID": datasets.Value("string"),
76
- "Author": datasets.Value("string"),
77
- "CommentBody": datasets.Value("string"),
78
- "Timestamp": datasets.Value("string"),
79
- "Upvotes": datasets.Value("int32"),
80
- "NumberofReplies": datasets.Value("int32"),
81
- }),
82
- }),
83
- })
84
- return datasets.DatasetInfo(
85
- # This is the description that will appear on the datasets page.
86
- description=_DESCRIPTION,
87
- # This defines the different columns of the dataset and their types
88
- features=features, # Here we define them above because they are different between the two configurations
89
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
90
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
91
- # supervised_keys=("sentence", "label"),
92
- # Homepage of the dataset for documentation
93
- homepage=_HOMEPAGE,
94
- # License for the dataset if available
95
- license=_LICENSE,
96
- # Citation for the dataset
97
- citation=_CITATION,
98
- )
99
-
100
- def _split_generators(self, dl_manager):
101
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
102
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
103
-
104
- # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
105
- # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
106
- # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
107
- config_name = getattr(self.config, 'name', self.DEFAULT_CONFIG_NAME)
108
- urls = _URLS.get(config_name, {}) # Get the URLs for the configuration name, if not found, return an empty dictionary
109
- data_dir = dl_manager.download_and_extract(urls)
110
- return [
111
- datasets.SplitGenerator(
112
- name=datasets.Split.TRAIN,
113
- # These kwargs will be passed to _generate_examples
114
- gen_kwargs={
115
- "filepath": os.path.join(data_dir, "train.jsonl"),
116
- "split": "train",
117
- },
118
- ),
119
- datasets.SplitGenerator(
120
- name=datasets.Split.VALIDATION,
121
- # These kwargs will be passed to _generate_examples
122
- gen_kwargs={
123
- "filepath": os.path.join(data_dir, "dev.jsonl"),
124
- "split": "dev",
125
- },
126
- ),
127
- datasets.SplitGenerator(
128
- name=datasets.Split.TEST,
129
- # These kwargs will be passed to _generate_examples
130
- gen_kwargs={
131
- "filepath": os.path.join(data_dir, "test.jsonl"),
132
- "split": "test"
133
- },
134
- ),
135
- ]
136
-
137
-
138
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
139
- def _generate_examples(self, filepath, split):
140
- # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
141
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
142
- with open(filepath, encoding="utf-8") as f:
143
- data = json.load(f)
144
- for idx, row in enumerate(data):
145
- subreddit = row["Subreddit"]
146
- posts = []
147
-
148
- # Check if the "Posts" key is present in the current row
149
- if "Posts" in row:
150
- for post in row["Posts"]:
151
- post_id = post["PostID"]
152
- post_title = post["PostTitle"]
153
- comments = []
154
- for comment in post["Comments"]:
155
- comment_id = comment["CommentID"]
156
- author = comment["Author"]
157
- comment_body = comment["CommentBody"]
158
- timestamp = comment["Timestamp"]
159
- upvotes = comment["Upvotes"]
160
- number_of_replies = comment["NumberofReplies"]
161
- logging.debug(f"Processing comment: {comment_id}, Upvotes: {upvotes}")
162
- comments.append({
163
- "CommentID": comment_id,
164
- "Author": author,
165
- "CommentBody": comment_body,
166
- "Timestamp": timestamp,
167
- "Upvotes": upvotes,
168
- "NumberofReplies": number_of_replies
169
- })
170
- posts.append({
171
- "PostID": post_id,
172
- "PostTitle": post_title,
173
- "Comments": comments
174
- })
175
- else:
176
- # Handle cases where the "Posts" key is missing
177
- posts = None
178
-
179
- yield idx, {
180
- "Subreddit": subreddit,
181
- "Posts": posts
182
- }