readme
Browse files- README.md +46 -0
- pubmed-summarization.py +0 -16
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
languages:
|
3 |
+
- en
|
4 |
+
multilinguality:
|
5 |
+
- monolingual
|
6 |
+
size_categories:
|
7 |
+
- 100K<n<1M
|
8 |
+
task_categories:
|
9 |
+
- conditional-text-generation
|
10 |
+
task_ids:
|
11 |
+
- summarization
|
12 |
+
---
|
13 |
+
|
14 |
+
# PubMed dataset for summarization
|
15 |
+
|
16 |
+
|
17 |
+
Adapted from this [repo](https://github.com/armancohan/long-summarization).
|
18 |
+
Note that original data are pre-tokenized. This dataset returns ' '.join(text).
|
19 |
+
This dataset is compatible with the `run_summarization.py` [script](https://github.com/huggingface/transformers/tree/master/examples/pytorch/summarization) from Transformers if you add this line to the `summarization_name_mapping` variable:
|
20 |
+
```python
|
21 |
+
"ccdv/pubmed-summarization": ("article", "abstract")
|
22 |
+
```
|
23 |
+
|
24 |
+
# Cite original article
|
25 |
+
```
|
26 |
+
@inproceedings{cohan-etal-2018-discourse,
|
27 |
+
title = "A Discourse-Aware Attention Model for Abstractive Summarization of Long Documents",
|
28 |
+
author = "Cohan, Arman and
|
29 |
+
Dernoncourt, Franck and
|
30 |
+
Kim, Doo Soon and
|
31 |
+
Bui, Trung and
|
32 |
+
Kim, Seokhwan and
|
33 |
+
Chang, Walter and
|
34 |
+
Goharian, Nazli",
|
35 |
+
booktitle = "Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)",
|
36 |
+
month = jun,
|
37 |
+
year = "2018",
|
38 |
+
address = "New Orleans, Louisiana",
|
39 |
+
publisher = "Association for Computational Linguistics",
|
40 |
+
url = "https://aclanthology.org/N18-2097",
|
41 |
+
doi = "10.18653/v1/N18-2097",
|
42 |
+
pages = "615--621",
|
43 |
+
abstract = "Neural abstractive summarization models have led to promising results in summarizing relatively short documents. We propose the first model for abstractive summarization of single, longer-form documents (e.g., research papers). Our approach consists of a new hierarchical encoder that models the discourse structure of a document, and an attentive discourse-aware decoder to generate the summary. Empirical results on two large-scale datasets of scientific papers show that our model significantly outperforms state-of-the-art models.",
|
44 |
+
}
|
45 |
+
```
|
46 |
+
|
pubmed-summarization.py
CHANGED
@@ -51,7 +51,6 @@ class PubMedSummarizationConfig(datasets.BuilderConfig):
|
|
51 |
class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder):
|
52 |
"""PubMedSummarization Dataset."""
|
53 |
|
54 |
-
_DOWNLOAD_URL = "https://huggingface.co/datasets/ccdv/pubmed-summarization/resolve/main/"
|
55 |
_TRAIN_FILE = "train.zip"
|
56 |
_VAL_FILE = "val.zip"
|
57 |
_TEST_FILE = "test.zip"
|
@@ -83,25 +82,10 @@ class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder):
|
|
83 |
)
|
84 |
|
85 |
def _split_generators(self, dl_manager):
|
86 |
-
"""
|
87 |
-
train_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._TRAIN_FILE)
|
88 |
-
val_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._VAL_FILE)
|
89 |
-
test_path = dl_manager.download_and_extract(self._DOWNLOAD_URL + self._TEST_FILE)
|
90 |
-
|
91 |
-
|
92 |
-
dl_paths = dl_manager.download_and_extract(self._TRAIN_FILE)
|
93 |
-
train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN)
|
94 |
|
95 |
-
dl_paths = dl_manager.download_and_extract(self._VAL_FILE)
|
96 |
-
train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN)
|
97 |
-
|
98 |
-
dl_paths = dl_manager.download_and_extract(self._TEST_FILE)
|
99 |
-
train_files = _subset_filenames(dl_paths, datasets.Split.TRAIN)
|
100 |
-
"""
|
101 |
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) + "/train.txt"
|
102 |
val_path = dl_manager.download_and_extract(self._VAL_FILE) + "/val.txt"
|
103 |
test_path = dl_manager.download_and_extract(self._TEST_FILE) + "/test.txt"
|
104 |
-
print("PATHS\n", train_path, val_path, test_path)
|
105 |
|
106 |
return [
|
107 |
datasets.SplitGenerator(
|
|
|
51 |
class PubMedSummarizationDataset(datasets.GeneratorBasedBuilder):
|
52 |
"""PubMedSummarization Dataset."""
|
53 |
|
|
|
54 |
_TRAIN_FILE = "train.zip"
|
55 |
_VAL_FILE = "val.zip"
|
56 |
_TEST_FILE = "test.zip"
|
|
|
82 |
)
|
83 |
|
84 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
train_path = dl_manager.download_and_extract(self._TRAIN_FILE) + "/train.txt"
|
87 |
val_path = dl_manager.download_and_extract(self._VAL_FILE) + "/val.txt"
|
88 |
test_path = dl_manager.download_and_extract(self._TEST_FILE) + "/test.txt"
|
|
|
89 |
|
90 |
return [
|
91 |
datasets.SplitGenerator(
|