|
import os |
|
import random |
|
import hashlib |
|
import datasets |
|
from datasets.tasks import AudioClassification |
|
|
|
_DBNAME = os.path.basename(__file__).split(".")[0] |
|
|
|
_DOMAIN = f"https://www.modelscope.cn/api/v1/datasets/ccmusic-database/{_DBNAME}/repo?Revision=master&FilePath=data" |
|
|
|
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{_DBNAME}" |
|
|
|
_NAMES = { |
|
"vibrato": ["颤音", "chan4_yin1"], |
|
"upward_portamento": ["上滑音", "shang4_hua2_yin1"], |
|
"downward_portamento": ["下滑音", "xia4_hua2_yin1"], |
|
"returning_portamento": ["回滑音", "hui2_hua2_yin1"], |
|
"glissando": ["刮奏, 花指", "gua1_zou4/hua1_zhi3"], |
|
"tremolo": ["摇指", "yao2_zhi3"], |
|
"harmonics": ["泛音", "fan4_yin1"], |
|
"plucks": ["勾, 打, 抹, 托, ...", "gou1/da3/mo3/tuo1/etc"], |
|
} |
|
|
|
|
|
_URLS = { |
|
"audio": f"{_DOMAIN}/audio.zip", |
|
"mel": f"{_DOMAIN}/mel.zip", |
|
} |
|
|
|
|
|
class GZ_IsoTech(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=44100), |
|
"mel": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=list(_NAMES.keys())), |
|
"cname": datasets.Value("string"), |
|
"pinyin": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("audio", "label"), |
|
homepage=_HOMEPAGE, |
|
license="CC-BY-NC-ND", |
|
version="1.2.0", |
|
task_templates=[ |
|
AudioClassification( |
|
task="audio-classification", |
|
audio_column="audio", |
|
label_column="label", |
|
) |
|
], |
|
) |
|
|
|
def _str2md5(self, original_string: str): |
|
md5_obj = hashlib.md5() |
|
md5_obj.update(original_string.encode("utf-8")) |
|
return md5_obj.hexdigest() |
|
|
|
def _split_generators(self, dl_manager): |
|
audio_files = dl_manager.download_and_extract(_URLS["audio"]) |
|
mel_files = dl_manager.download_and_extract(_URLS["mel"]) |
|
train_files, test_files = {}, {} |
|
for path in dl_manager.iter_files([audio_files]): |
|
fname: str = os.path.basename(path) |
|
dirname = os.path.dirname(path) |
|
splt = os.path.basename(os.path.dirname(dirname)) |
|
if fname.endswith(".wav"): |
|
cls = f"{splt}/{os.path.basename(dirname)}/" |
|
item_id = self._str2md5(cls + fname.split(".wa")[0]) |
|
if splt == "train": |
|
train_files[item_id] = {"audio": path} |
|
else: |
|
test_files[item_id] = {"audio": path} |
|
|
|
for path in dl_manager.iter_files([mel_files]): |
|
fname = os.path.basename(path) |
|
dirname = os.path.dirname(path) |
|
splt = os.path.basename(os.path.dirname(dirname)) |
|
if fname.endswith(".jpg"): |
|
cls = f"{splt}/{os.path.basename(dirname)}/" |
|
item_id = self._str2md5(cls + fname.split(".jp")[0]) |
|
if splt == "train": |
|
train_files[item_id]["mel"] = path |
|
else: |
|
test_files[item_id]["mel"] = path |
|
|
|
trainset = list(train_files.values()) |
|
testset = list(test_files.values()) |
|
random.shuffle(trainset) |
|
random.shuffle(testset) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"files": trainset}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"files": testset}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
pt = os.path.basename(os.path.dirname(path["audio"])) |
|
yield i, { |
|
"audio": path["audio"], |
|
"mel": path["mel"], |
|
"label": pt, |
|
"cname": _NAMES[pt][0], |
|
"pinyin": _NAMES[pt][1], |
|
} |
|
|