|
import os |
|
import datasets |
|
import pandas as pd |
|
from datasets.tasks import AudioClassification |
|
|
|
|
|
_NAMES = { |
|
"songs": [f"song{i}" for i in range(1, 7)], |
|
"singers": [f"singer{i}" for i in range(1, 23)], |
|
} |
|
|
|
_HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" |
|
|
|
_DOMAIN = f"{_HOMEPAGE}/resolve/master/data" |
|
|
|
_URLS = { |
|
"audio": f"{_DOMAIN}/audio.zip", |
|
"mel": f"{_DOMAIN}/mel.zip", |
|
} |
|
|
|
|
|
class acapella(datasets.GeneratorBasedBuilder): |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=48000), |
|
"mel": datasets.Image(), |
|
"singer_id": datasets.features.ClassLabel(names=_NAMES["singers"]), |
|
"pitch": datasets.Value("float32"), |
|
"rhythm": datasets.Value("float32"), |
|
"vocal_range": datasets.Value("float32"), |
|
"timbre": datasets.Value("float32"), |
|
"pronunciation": datasets.Value("float32"), |
|
"vibrato": datasets.Value("float32"), |
|
"dynamic": datasets.Value("float32"), |
|
"breath_control": datasets.Value("float32"), |
|
"overall_performance": datasets.Value("float32"), |
|
} |
|
), |
|
supervised_keys=("audio", "singer_id"), |
|
homepage=_HOMEPAGE, |
|
license="CC-BY-NC-ND", |
|
version="1.2.0", |
|
task_templates=[ |
|
AudioClassification( |
|
task="audio-classification", |
|
audio_column="audio", |
|
label_column="singer_id", |
|
) |
|
], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
songs = {} |
|
for index in _NAMES["songs"]: |
|
csv_files = dl_manager.download(f"{_DOMAIN}/{index}.csv") |
|
song_eval = pd.read_csv(csv_files, index_col="singer_id") |
|
scores = [] |
|
for i in range(len(_NAMES["singers"])): |
|
scores.append( |
|
{ |
|
"pitch": song_eval.iloc[i]["pitch"], |
|
"rhythm": song_eval.iloc[i]["rhythm"], |
|
"vocal_range": song_eval.iloc[i]["vocal_range"], |
|
"timbre": song_eval.iloc[i]["timbre"], |
|
"pronunciation": song_eval.iloc[i]["pronunciation"], |
|
"vibrato": song_eval.iloc[i]["vibrato"], |
|
"dynamic": song_eval.iloc[i]["dynamic"], |
|
"breath_control": song_eval.iloc[i]["breath_control"], |
|
"overall_performance": song_eval.iloc[i]["overall_performance"], |
|
} |
|
) |
|
|
|
songs[index] = scores |
|
|
|
audio_files = dl_manager.download_and_extract(_URLS["audio"]) |
|
for fpath in dl_manager.iter_files([audio_files]): |
|
fname: str = os.path.basename(fpath) |
|
if fname.endswith(".wav"): |
|
song_id = os.path.basename(os.path.dirname(fpath)) |
|
singer_id = int(fname.split("(")[1].split(")")[0]) - 1 |
|
songs[song_id][singer_id]["audio"] = fpath |
|
|
|
mel_files = dl_manager.download_and_extract(_URLS["mel"]) |
|
for fpath in dl_manager.iter_files([mel_files]): |
|
fname = os.path.basename(fpath) |
|
if fname.endswith(".jpg"): |
|
song_id = os.path.basename(os.path.dirname(fpath)) |
|
singer_id = int(fname.split("(")[1].split(")")[0]) - 1 |
|
songs[song_id][singer_id]["mel"] = fpath |
|
|
|
split_generator = [] |
|
for key in songs.keys(): |
|
split_generator.append( |
|
datasets.SplitGenerator( |
|
name=key, |
|
gen_kwargs={"files": songs[key]}, |
|
) |
|
) |
|
|
|
return split_generator |
|
|
|
def _generate_examples(self, files): |
|
for i, item in enumerate(files): |
|
yield i, { |
|
"audio": item["audio"], |
|
"mel": item["mel"], |
|
"singer_id": i, |
|
"pitch": item["pitch"], |
|
"rhythm": item["rhythm"], |
|
"vocal_range": item["vocal_range"], |
|
"timbre": item["timbre"], |
|
"pronunciation": item["pronunciation"], |
|
"vibrato": item["vibrato"], |
|
"dynamic": item["dynamic"], |
|
"breath_control": item["breath_control"], |
|
"overall_performance": item["overall_performance"], |
|
} |
|
|