# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import json | |
import os | |
from typing import Dict, List, Optional, Set | |
import numpy as np | |
import datasets | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
_HOMEPAGE = "https://zenodo.org/records/10159290" | |
_LICENSE = """Creative Commons Attribution 4.0 International License \ | |
(https://creativecommons.org/licenses/by/4.0/legalcode)""" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"first_domain": { | |
"images":"https://zenodo.org/records/10159290/files/images.zip", | |
"masks":"https://zenodo.org/records/10159290/files/masks.zip", | |
"overview":"https://zenodo.org/records/10159290/files/overview.csv", | |
"gradings":"https://zenodo.org/records/10159290/files/radiological_gradings.csv", | |
} | |
} | |
class SPIDER(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), | |
datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), | |
] | |
DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"option1": datasets.Value("string"), | |
"answer": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
else: # This is an example to show how to have different features for "first_domain" and "second_domain" | |
features = datasets.Features( | |
{ | |
"sentence": datasets.Value("string"), | |
"option2": datasets.Value("string"), | |
"second_domain_answer": datasets.Value("string") | |
# These are the features of your dataset like images, labels ... | |
} | |
) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and | |
# specify them. They'll be used if as_supervised=True in builder.as_dataset. | |
# supervised_keys=("sentence", "label"), | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
urls = _URLS[self.config.name] | |
paths_dict = dl_manager.download_and_extract(urls) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"paths_dict": paths_dict, | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"paths_dict": paths_dict, | |
"split": "dev", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"paths_dict": paths_dict, | |
"split": "test" | |
}, | |
), | |
] | |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
def _generate_examples(self, paths_dict, split): | |
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. | |
# Generate train/validate/test partitions of patient IDs | |
np.random.seed(9999) | |
N_PATIENTS = 257 #TODO: make hardcoded values dynamic | |
VALIDATE_SHARE = 0.3 | |
TEST_SHARE = 0.2 | |
TRAIN_SHARE = (1.0 - VALIDATE_SHARE - TEST_SHARE) | |
partition = np.random.choice( | |
['train', 'dev', 'test'], | |
p=[TRAIN_SHARE, VALIDATE_SHARE, TEST_SHARE], | |
size=N_PATIENTS, | |
) | |
patient_ids = (np.arange(N_PATIENTS) + 1) | |
train_ids = set(patient_ids[partition == 'train']) | |
validate_ids = set(patient_ids[partition == 'dev']) | |
test_ids = set(patient_ids[partition == 'test']) | |
assert len(train_ids.union(validate_ids, test_ids)) == N_PATIENTS | |
# Import patient/scanner data and radiological gradings data | |
overview_data = import_csv_data(paths_dict['overview']) | |
grades_data = import_csv_data(paths_dict['gradings']) | |
# Import image and mask data | |
image_files = [ | |
file for file in os.listdir(os.path.join(paths_dict['images'], 'images')) | |
if file.endswith('.mha') | |
] | |
assert len(image_files) > 0, "No image files found--check directory path." | |
mask_files = [ | |
file for file in os.listdir(os.path.join(paths_dict['masks'], 'masks')) | |
if file.endswith('.mha') | |
] | |
assert len(mask_files) > 0, "No mask files found--check directory path." | |
images = [] | |
masks = [] | |
if split == 'train': | |
for patient_id in train_ids: | |
elif split == 'validate': | |
elif split == 'test': | |
def import_csv_data(filepath: str) -> List[Dict[str, str]]: | |
"""Import all rows of CSV file.""" | |
results = [] | |
with open(filepath, encoding='utf-8') as f: | |
reader = csv.DictReader(f) | |
for line in reader: | |
results.append(line) | |
return results | |
with open(filepath, encoding="utf-8") as f: | |
for key, row in enumerate(f): | |
data = json.loads(row) | |
if self.config.name == "first_domain": | |
# Yields examples as (key, example) tuples | |
yield key, { | |
"sentence": data["sentence"], | |
"option1": data["option1"], | |
"answer": "" if split == "test" else data["answer"], | |
} | |
else: | |
yield key, { | |
"sentence": data["sentence"], | |
"option2": data["option2"], | |
"second_domain_answer": "" if split == "test" else data["second_domain_answer"], | |
} |